A Hybrid Framework for Object Distance Estimation using a Monocular Camera

人工智能 计算机科学 计算机视觉 最小边界框 目标检测 单眼 航程(航空) 跳跃式监视 像素 视野 模式识别(心理学) 图像(数学) 材料科学 复合材料
作者
Vaibhav Patel,Varun Mehta,Miodrag Bolić,Iraj Mantegh
标识
DOI:10.1109/dasc58513.2023.10311189
摘要

Object distance estimation using the monocular camera is a challenging problem in computer vision with many practical applications. Various algorithms are developed for distance estimation using a monocular camera; some involve traditional techniques, while others are based on Deep Learning (DL). Both methods have limitations, such as requiring camera calibration parameters, limited distance estimation range, or the object of interest should be relatively large to get accurate distance estimation. Due to these drawbacks, such algorithms cannot be easily generalized for many practical applications. In this paper, we propose a hybrid monocular distance estimation framework that consists of You Look Only Once version 7 (YOLOv7) algorithm for visual object detection and linear regression model for distance estimation. For our use case, this framework is trained on our field-captured Unmanned Aerial Vehicle (UAV) dataset to detect and estimate distance of UAVs. The dataset includes videos of UAVs obtained from different Point of View (POV) using a Pan-Tilt-Zoom (PTZ) camera that captures and tracks UAVs in the large field of view. Video frames are synchronized with the distance range data obtained from Radio Detection and Ranging (RADAR) sensor which will act as ground truth for regression model. The regression model is trained on input features such as bounding box coordinates, the average number of red, blue, and yellow pixels within the bounding box, and embedded features of detected objects obtained from YOLOv7 and output were RADAR range measurements. Trained UAV detection network has mAP 0.5 of 0.854, mAP .5:.95 of 0.595 and distance estimation regressor has Mean Squared Error (MSE) of 0.06375 on independent test set. We validated this framework on our field dataset and demonstrated that our approach could detect and estimate distance efficiently and accurately. This framework can be extended for any real-world monocular distance estimation use case just by retraining the YOLOv7 model for desired object detection class and regression model for object-specific distance estimation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
干净士晋完成签到 ,获得积分10
刚刚
Valrhona完成签到 ,获得积分10
1秒前
36456657完成签到,获得积分0
3秒前
李健的小迷弟应助黄垚采纳,获得10
3秒前
LIKUN完成签到,获得积分10
6秒前
无心的天真完成签到 ,获得积分10
7秒前
专炸油条完成签到 ,获得积分10
9秒前
外向的百川完成签到 ,获得积分10
10秒前
缥缈的冰旋完成签到,获得积分10
12秒前
量子星尘发布了新的文献求助10
13秒前
贼吖完成签到 ,获得积分10
14秒前
T_MC郭完成签到,获得积分10
15秒前
务实雁梅完成签到,获得积分10
16秒前
ED应助xiaobin采纳,获得10
16秒前
luoyukejing完成签到,获得积分10
18秒前
19秒前
找文献呢完成签到,获得积分10
21秒前
LIUJIE完成签到,获得积分10
22秒前
22秒前
时尚雨兰完成签到,获得积分10
23秒前
微雨若,,完成签到 ,获得积分10
24秒前
黄垚发布了新的文献求助10
24秒前
米博士完成签到,获得积分10
27秒前
迷路哑铃发布了新的文献求助10
27秒前
金枪鱼子发布了新的文献求助10
28秒前
dajiejie完成签到 ,获得积分10
28秒前
俏皮的老城完成签到 ,获得积分10
29秒前
34秒前
Jasper应助STP顶峰相见采纳,获得10
36秒前
Vesper完成签到 ,获得积分10
37秒前
43秒前
肸肸完成签到 ,获得积分10
43秒前
45秒前
Tysonqu完成签到,获得积分10
45秒前
xudongmei完成签到,获得积分10
48秒前
drleslie完成签到 ,获得积分10
49秒前
香蕉子骞完成签到 ,获得积分10
50秒前
YMUSTC完成签到,获得积分10
52秒前
最美夕阳红完成签到,获得积分10
54秒前
研友_VZGVzn完成签到,获得积分10
1分钟前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
Coking simulation aids on-stream time 450
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4015640
求助须知:如何正确求助?哪些是违规求助? 3555625
关于积分的说明 11318138
捐赠科研通 3288796
什么是DOI,文献DOI怎么找? 1812284
邀请新用户注册赠送积分活动 887882
科研通“疑难数据库(出版商)”最低求助积分说明 812015