亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A Hybrid Framework for Object Distance Estimation using a Monocular Camera

人工智能 计算机科学 计算机视觉 最小边界框 目标检测 单眼 航程(航空) 跳跃式监视 像素 视野 模式识别(心理学) 图像(数学) 材料科学 复合材料
作者
Vaibhav Patel,Varun Mehta,Miodrag Bolić,Iraj Mantegh
标识
DOI:10.1109/dasc58513.2023.10311189
摘要

Object distance estimation using the monocular camera is a challenging problem in computer vision with many practical applications. Various algorithms are developed for distance estimation using a monocular camera; some involve traditional techniques, while others are based on Deep Learning (DL). Both methods have limitations, such as requiring camera calibration parameters, limited distance estimation range, or the object of interest should be relatively large to get accurate distance estimation. Due to these drawbacks, such algorithms cannot be easily generalized for many practical applications. In this paper, we propose a hybrid monocular distance estimation framework that consists of You Look Only Once version 7 (YOLOv7) algorithm for visual object detection and linear regression model for distance estimation. For our use case, this framework is trained on our field-captured Unmanned Aerial Vehicle (UAV) dataset to detect and estimate distance of UAVs. The dataset includes videos of UAVs obtained from different Point of View (POV) using a Pan-Tilt-Zoom (PTZ) camera that captures and tracks UAVs in the large field of view. Video frames are synchronized with the distance range data obtained from Radio Detection and Ranging (RADAR) sensor which will act as ground truth for regression model. The regression model is trained on input features such as bounding box coordinates, the average number of red, blue, and yellow pixels within the bounding box, and embedded features of detected objects obtained from YOLOv7 and output were RADAR range measurements. Trained UAV detection network has mAP 0.5 of 0.854, mAP .5:.95 of 0.595 and distance estimation regressor has Mean Squared Error (MSE) of 0.06375 on independent test set. We validated this framework on our field dataset and demonstrated that our approach could detect and estimate distance efficiently and accurately. This framework can be extended for any real-world monocular distance estimation use case just by retraining the YOLOv7 model for desired object detection class and regression model for object-specific distance estimation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Tashanzhishi完成签到,获得积分10
3秒前
11秒前
576-576完成签到 ,获得积分10
34秒前
38秒前
没有几十亿完成签到,获得积分10
44秒前
44秒前
1分钟前
虾青素应助王英俊采纳,获得10
1分钟前
JavedAli完成签到,获得积分10
1分钟前
ok123完成签到 ,获得积分10
1分钟前
慕青应助Ha采纳,获得10
2分钟前
卓初露完成签到 ,获得积分10
2分钟前
2分钟前
Ha完成签到,获得积分20
2分钟前
Ha发布了新的文献求助10
2分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
所所应助科研通管家采纳,获得10
2分钟前
迷茫的一代完成签到,获得积分10
2分钟前
薛清棵发布了新的文献求助10
2分钟前
Alisha完成签到,获得积分10
3分钟前
3分钟前
HD发布了新的文献求助10
3分钟前
4分钟前
4分钟前
HD完成签到,获得积分10
4分钟前
GPTea应助科研通管家采纳,获得20
4分钟前
Criminology34应助科研通管家采纳,获得10
4分钟前
Criminology34应助科研通管家采纳,获得10
4分钟前
GPTea应助科研通管家采纳,获得20
4分钟前
Criminology34应助科研通管家采纳,获得10
4分钟前
李爱国应助不是小苦瓜采纳,获得10
4分钟前
不是小苦瓜完成签到,获得积分20
4分钟前
4分钟前
yangyueqiong发布了新的文献求助10
4分钟前
yangyueqiong完成签到,获得积分10
5分钟前
zm完成签到 ,获得积分10
5分钟前
Criminology34应助科研通管家采纳,获得10
6分钟前
Criminology34应助科研通管家采纳,获得10
6分钟前
Marciu33应助科研通管家采纳,获得10
6分钟前
7分钟前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Comparing natural with chemical additive production 500
Machine Learning in Chemistry 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
Refractory Castable Engineering 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5199530
求助须知:如何正确求助?哪些是违规求助? 4380069
关于积分的说明 13638812
捐赠科研通 4236529
什么是DOI,文献DOI怎么找? 2324113
邀请新用户注册赠送积分活动 1322112
关于科研通互助平台的介绍 1273438