A Hybrid Framework for Object Distance Estimation using a Monocular Camera

人工智能 计算机科学 计算机视觉 最小边界框 目标检测 单眼 航程(航空) 跳跃式监视 像素 视野 模式识别(心理学) 图像(数学) 材料科学 复合材料
作者
Vaibhav Patel,Varun Mehta,Miodrag Bolić,Iraj Mantegh
标识
DOI:10.1109/dasc58513.2023.10311189
摘要

Object distance estimation using the monocular camera is a challenging problem in computer vision with many practical applications. Various algorithms are developed for distance estimation using a monocular camera; some involve traditional techniques, while others are based on Deep Learning (DL). Both methods have limitations, such as requiring camera calibration parameters, limited distance estimation range, or the object of interest should be relatively large to get accurate distance estimation. Due to these drawbacks, such algorithms cannot be easily generalized for many practical applications. In this paper, we propose a hybrid monocular distance estimation framework that consists of You Look Only Once version 7 (YOLOv7) algorithm for visual object detection and linear regression model for distance estimation. For our use case, this framework is trained on our field-captured Unmanned Aerial Vehicle (UAV) dataset to detect and estimate distance of UAVs. The dataset includes videos of UAVs obtained from different Point of View (POV) using a Pan-Tilt-Zoom (PTZ) camera that captures and tracks UAVs in the large field of view. Video frames are synchronized with the distance range data obtained from Radio Detection and Ranging (RADAR) sensor which will act as ground truth for regression model. The regression model is trained on input features such as bounding box coordinates, the average number of red, blue, and yellow pixels within the bounding box, and embedded features of detected objects obtained from YOLOv7 and output were RADAR range measurements. Trained UAV detection network has mAP 0.5 of 0.854, mAP .5:.95 of 0.595 and distance estimation regressor has Mean Squared Error (MSE) of 0.06375 on independent test set. We validated this framework on our field dataset and demonstrated that our approach could detect and estimate distance efficiently and accurately. This framework can be extended for any real-world monocular distance estimation use case just by retraining the YOLOv7 model for desired object detection class and regression model for object-specific distance estimation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
兴奋觅海完成签到,获得积分10
1秒前
长山小春完成签到,获得积分10
2秒前
3秒前
Esfuerzo完成签到,获得积分10
4秒前
4秒前
假装超人会飞完成签到,获得积分10
4秒前
5秒前
7秒前
完美世界应助xiaoyeken采纳,获得10
8秒前
9秒前
科研通AI2S应助丹丹采纳,获得10
9秒前
达达尼发布了新的文献求助10
11秒前
zzzsq发布了新的文献求助10
12秒前
13秒前
哒哒发布了新的文献求助10
14秒前
17秒前
达达尼完成签到,获得积分10
18秒前
鲤鱼萧发布了新的文献求助10
19秒前
传奇3应助孤巷的猫采纳,获得10
20秒前
jiangjiang完成签到,获得积分10
20秒前
21秒前
毛豆应助xy820采纳,获得10
22秒前
希望天下0贩的0应助哒哒采纳,获得10
23秒前
24秒前
Hello应助jiangjiang采纳,获得10
24秒前
啛啛喳喳发布了新的文献求助10
25秒前
852应助自由的青烟采纳,获得10
28秒前
耶布达发布了新的文献求助30
29秒前
小木木完成签到,获得积分10
30秒前
毛豆应助丹丹采纳,获得10
32秒前
36秒前
37秒前
小潘完成签到,获得积分10
38秒前
39秒前
完美世界应助晨昏采纳,获得10
40秒前
40秒前
41秒前
41秒前
41秒前
45秒前
高分求助中
Sustainability in Tides Chemistry 1500
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
Threaded Harmony: A Sustainable Approach to Fashion 799
Livre et militantisme : La Cité éditeur 1958-1967 500
Retention of title in secured transactions law from a creditor's perspective: A comparative analysis of selected (non-)functional approaches 500
"Sixth plenary session of the Eighth Central Committee of the Communist Party of China" 400
New China Forges Ahead: Important Documents of the Third Session of the First National Committee of the Chinese People's Political Consultative Conference 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3056190
求助须知:如何正确求助?哪些是违规求助? 2712779
关于积分的说明 7433034
捐赠科研通 2357761
什么是DOI,文献DOI怎么找? 1249040
科研通“疑难数据库(出版商)”最低求助积分说明 606843
版权声明 596195