Understanding why constant energy or constant temperature may affect nucleation behavior in MD simulations: A study of gas hydrate nucleation

成核 笼状水合物 水合物 分子动力学 化学物理 热力学 化学 冰核 工作(物理) 水模型 物理化学 计算化学 物理 有机化学
作者
Lei Wang,Peter G. Kusalik
出处
期刊:Journal of Chemical Physics [American Institute of Physics]
卷期号:159 (18) 被引量:5
标识
DOI:10.1063/5.0169669
摘要

Molecular dynamics simulations have been widely used in exploring the nucleation behavior of many systems, including gas hydrates. Gas hydrates are ice-like solids in which gas molecules are trapped in water cages. During hydrate formation, a considerable amount of heat is released, and previous work has reported that the choice of temperature control scheme may affect the behavior of hydrate formation. The origins of this effect have remained an open question. To address this question, extensive NVE simulations and thermostatted (NPT and NVT) simulations with different temperature coupling strengths have been performed and compared for systems where a water nanodroplet is immersed in a H2S liquid. Detailed analysis of the hydrate structures and their mechanisms of formation has been carried out. Slower nucleation rates in NVE simulations in comparison to NPT simulations have been observed in agreement with previous studies. Probability distributions for various temperature measures along with their spatial distributions have been examined. Interestingly, a comparison of these temperature distributions reveals a small yet noticeable difference in the widths of the distributions for water. The somewhat reduced fluctuations in the temperature for the water species in the NVE simulations appear to be responsible for reducing the hydrate nucleation rate. We further conjecture that the NVE-impeded nucleation rate may be the result of the finite size of the surroundings (here the liquid H2S portion of the system). Additionally, a local spatial temperature gradient arising from the heat released during hydrate formation could not be detected.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zhuyuxin发布了新的文献求助10
刚刚
刚刚
1秒前
2秒前
乐观无心发布了新的文献求助10
2秒前
韩立发布了新的文献求助10
3秒前
虞丹萱发布了新的文献求助10
3秒前
十月完成签到 ,获得积分10
3秒前
NANA完成签到,获得积分20
3秒前
张长江发布了新的文献求助10
3秒前
曲淳发布了新的文献求助10
4秒前
慕青应助听话的富采纳,获得10
4秒前
5秒前
5秒前
YYYYYY完成签到,获得积分10
7秒前
meant发布了新的文献求助10
7秒前
8秒前
书上总会写到浪漫完成签到,获得积分10
9秒前
10秒前
ding应助自觉博超采纳,获得10
10秒前
zhuyuxin完成签到,获得积分10
10秒前
时尚的飞机完成签到,获得积分10
12秒前
13秒前
xxz发布了新的文献求助10
13秒前
14秒前
14秒前
Ava应助曲淳采纳,获得10
14秒前
14秒前
seu000完成签到,获得积分10
15秒前
hj1234发布了新的文献求助10
16秒前
16秒前
16秒前
17秒前
17秒前
慕青应助Ogai采纳,获得10
18秒前
18秒前
18秒前
19秒前
Orange应助Satan采纳,获得10
19秒前
丘比特应助1111采纳,获得10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Investigative Interviewing: Psychology and Practice 300
Atlas of Anatomy (Fifth Edition) 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5287058
求助须知:如何正确求助?哪些是违规求助? 4439572
关于积分的说明 13822123
捐赠科研通 4321561
什么是DOI,文献DOI怎么找? 2372031
邀请新用户注册赠送积分活动 1367525
关于科研通互助平台的介绍 1331007