Identifying ARG-carrying bacteriophages in a lake replenished by reclaimed water using deep learning techniques

基因组 生物 流动遗传元素 质粒 生物信息学 抗生素耐药性 噬菌体 温带气候 水平基因转移 基因组 抵抗性 微生物学 大肠杆菌 抗生素 基因 生态学 遗传学
作者
Donglin Wang,Jiayu Shang,Hui Lin,Jinsong Liang,Chenchen Wang,Yanni Sun,Yaohui Bai,Jiuhui Qu
出处
期刊:Water Research [Elsevier BV]
卷期号:248: 120859-120859 被引量:7
标识
DOI:10.1016/j.watres.2023.120859
摘要

As important mobile genetic elements, phages support the spread of antibiotic resistance genes (ARGs). Previous analyses of metaviromes or metagenome-assembled genomes (MAGs) failed to assess the extent of ARGs transferred by phages, particularly in the generation of antibiotic pathogens. Therefore, we have developed a bioinformatic pipeline that utilizes deep learning techniques to identify ARG-carrying phages and predict their hosts, with a special focus on pathogens. Using this method, we discovered that the predominant types of ARGs carried by temperate phages in a typical landscape lake, which is fully replenished by reclaimed water, were related to multidrug resistance and β-lactam antibiotics. MAGs containing virulent factors (VFs) were predicted to serve as hosts for these ARG-carrying phages, which suggests that the phages may have the potential to transfer ARGs. In silico analysis showed a significant positive correlation between temperate phages and host pathogens (R = 0.503, p < 0.001), which was later confirmed by qPCR. Interestingly, these MAGs were found to be more abundant than those containing both ARGs and VFs, especially in December and March. Seasonal variations were observed in the abundance of phages harboring ARGs (from 5.62% to 21.02%) and chromosomes harboring ARGs (from 18.01% to 30.94%). In contrast, the abundance of plasmids harboring ARGs remained unchanged. In summary, this study leverages deep learning to analyze phage-transferred ARGs and demonstrates an alternative method to track the production of potential antibiotic-resistant pathogens by metagenomics that can be extended to microbiological risk assessment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
细嗅蔷薇完成签到,获得积分10
刚刚
叽里呱啦完成签到 ,获得积分10
刚刚
zhangliangfu完成签到 ,获得积分10
1秒前
半斤完成签到 ,获得积分10
1秒前
恩赐解脱完成签到,获得积分10
1秒前
2秒前
一点完成签到,获得积分10
2秒前
衢夭完成签到,获得积分10
2秒前
xlk2222完成签到,获得积分10
3秒前
3秒前
renwoxing完成签到,获得积分10
3秒前
treasure完成签到,获得积分10
4秒前
orixero应助苏打采纳,获得10
4秒前
略略略完成签到 ,获得积分10
4秒前
苏孖完成签到,获得积分10
5秒前
杰桑的西地那非完成签到 ,获得积分10
5秒前
wzy完成签到,获得积分10
6秒前
Tom完成签到,获得积分10
6秒前
茶茶完成签到,获得积分10
7秒前
拉长的晓蕾完成签到,获得积分10
8秒前
Amy完成签到,获得积分10
8秒前
yao完成签到,获得积分10
9秒前
乐正广山完成签到,获得积分20
9秒前
幽默飞雪完成签到 ,获得积分10
10秒前
墨扬完成签到,获得积分10
10秒前
12秒前
XiaohuLee完成签到,获得积分10
12秒前
杰尼乾乾完成签到 ,获得积分10
13秒前
Survive完成签到,获得积分10
13秒前
细腻怜容完成签到,获得积分10
13秒前
七七完成签到,获得积分10
14秒前
来自三百发布了新的文献求助10
14秒前
追寻皮卡丘完成签到 ,获得积分10
14秒前
专注鸡完成签到,获得积分10
15秒前
小橙子完成签到,获得积分10
15秒前
我喜欢大学霸完成签到,获得积分10
15秒前
能干世倌完成签到,获得积分10
16秒前
16秒前
穆立果完成签到,获得积分10
17秒前
柠一完成签到 ,获得积分10
17秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3968593
求助须知:如何正确求助?哪些是违规求助? 3513416
关于积分的说明 11167791
捐赠科研通 3248853
什么是DOI,文献DOI怎么找? 1794507
邀请新用户注册赠送积分活动 875170
科研通“疑难数据库(出版商)”最低求助积分说明 804671