Identifying ARG-carrying bacteriophages in a lake replenished by reclaimed water using deep learning techniques

基因组 生物 流动遗传元素 质粒 生物信息学 抗生素耐药性 噬菌体 温带气候 水平基因转移 基因组 抵抗性 微生物学 大肠杆菌 抗生素 基因 生态学 遗传学
作者
Donglin Wang,Jiayu Shang,Hui Lin,Jinsong Liang,Chenchen Wang,Yanni Sun,Yaohui Bai,Jiuhui Qu
出处
期刊:Water Research [Elsevier]
卷期号:248: 120859-120859 被引量:15
标识
DOI:10.1016/j.watres.2023.120859
摘要

As important mobile genetic elements, phages support the spread of antibiotic resistance genes (ARGs). Previous analyses of metaviromes or metagenome-assembled genomes (MAGs) failed to assess the extent of ARGs transferred by phages, particularly in the generation of antibiotic pathogens. Therefore, we have developed a bioinformatic pipeline that utilizes deep learning techniques to identify ARG-carrying phages and predict their hosts, with a special focus on pathogens. Using this method, we discovered that the predominant types of ARGs carried by temperate phages in a typical landscape lake, which is fully replenished by reclaimed water, were related to multidrug resistance and β-lactam antibiotics. MAGs containing virulent factors (VFs) were predicted to serve as hosts for these ARG-carrying phages, which suggests that the phages may have the potential to transfer ARGs. In silico analysis showed a significant positive correlation between temperate phages and host pathogens (R = 0.503, p < 0.001), which was later confirmed by qPCR. Interestingly, these MAGs were found to be more abundant than those containing both ARGs and VFs, especially in December and March. Seasonal variations were observed in the abundance of phages harboring ARGs (from 5.62% to 21.02%) and chromosomes harboring ARGs (from 18.01% to 30.94%). In contrast, the abundance of plasmids harboring ARGs remained unchanged. In summary, this study leverages deep learning to analyze phage-transferred ARGs and demonstrates an alternative method to track the production of potential antibiotic-resistant pathogens by metagenomics that can be extended to microbiological risk assessment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
优秀的离子键完成签到,获得积分10
刚刚
刚刚
哈哈哈哈哈哈完成签到,获得积分10
4秒前
Yinbo完成签到,获得积分10
4秒前
云水雾心发布了新的文献求助10
5秒前
DezhaoWang完成签到,获得积分10
7秒前
Yinbo发布了新的文献求助10
7秒前
hAFMET完成签到,获得积分10
8秒前
共享精神应助一米阳光采纳,获得10
11秒前
12秒前
css完成签到,获得积分10
14秒前
huoguo完成签到,获得积分10
14秒前
moral发布了新的文献求助10
17秒前
17秒前
LJJ完成签到 ,获得积分10
17秒前
徐慕源完成签到,获得积分10
21秒前
桃井尤川完成签到,获得积分10
22秒前
22秒前
24秒前
tjxhtj完成签到,获得积分10
26秒前
鑫博发布了新的文献求助10
26秒前
HK完成签到 ,获得积分10
28秒前
yolo完成签到,获得积分10
33秒前
Li完成签到,获得积分10
36秒前
37秒前
lzz发布了新的文献求助10
41秒前
liuye0202完成签到,获得积分10
42秒前
莫问归期应助科研通管家采纳,获得10
42秒前
只争朝夕应助科研通管家采纳,获得10
42秒前
香蕉觅云应助科研通管家采纳,获得10
42秒前
CodeCraft应助科研通管家采纳,获得10
43秒前
43秒前
43秒前
43秒前
43秒前
文艺水风完成签到 ,获得积分10
46秒前
wsy完成签到 ,获得积分10
46秒前
47秒前
47秒前
一米阳光发布了新的文献求助10
49秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 600
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5565210
求助须知:如何正确求助?哪些是违规求助? 4650063
关于积分的说明 14689685
捐赠科研通 4591948
什么是DOI,文献DOI怎么找? 2519415
邀请新用户注册赠送积分活动 1491924
关于科研通互助平台的介绍 1463140