Identifying ARG-carrying bacteriophages in a lake replenished by reclaimed water using deep learning techniques

基因组 生物 流动遗传元素 质粒 生物信息学 抗生素耐药性 噬菌体 温带气候 水平基因转移 基因组 抵抗性 微生物学 大肠杆菌 毒力 噬菌体疗法 抗生素 基因 生态学 遗传学
作者
Li Wang,Jiayu Shang,Hui Lin,Jinsong Liang,Chenchen Wang,Yanni Sun,Yaohui Bai,Jiuhui Qu
出处
期刊:Water Research [Elsevier]
卷期号:248: 120859-120859 被引量:5
标识
DOI:10.1016/j.watres.2023.120859
摘要

As important mobile genetic elements, phages support the spread of antibiotic resistance genes (ARGs). Previous analyses of metaviromes or metagenome-assembled genomes (MAGs) failed to assess the extent of ARGs transferred by phages, particularly in the generation of antibiotic pathogens. Therefore, we have developed a bioinformatic pipeline that utilizes deep learning techniques to identify ARG-carrying phages and predict their hosts, with a special focus on pathogens. Using this method, we discovered that the predominant types of ARGs carried by temperate phages in a typical landscape lake, which is fully replenished by reclaimed water, were related to multidrug resistance and β-lactam antibiotics. MAGs containing virulent factors (VFs) were predicted to serve as hosts for these ARG-carrying phages, which suggests that the phages may have the potential to transfer ARGs. In silico analysis showed a significant positive correlation between temperate phages and host pathogens (R = 0.503, p < 0.001), which was later confirmed by qPCR. Interestingly, these MAGs were found to be more abundant than those containing both ARGs and VFs, especially in December and March. Seasonal variations were observed in the abundance of phages harboring ARGs (from 5.62% to 21.02%) and chromosomes harboring ARGs (from 18.01% to 30.94%). In contrast, the abundance of plasmids harboring ARGs remained unchanged. In summary, this study leverages deep learning to analyze phage-transferred ARGs and demonstrates an alternative method to track the production of potential antibiotic-resistant pathogens by metagenomics that can be extended to microbiological risk assessment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小舟潮发布了新的文献求助10
1秒前
LN发布了新的文献求助10
2秒前
suka发布了新的文献求助10
3秒前
隐形曼青应助zxy采纳,获得10
3秒前
11发布了新的文献求助10
3秒前
暮霭沉沉应助fifteen采纳,获得10
4秒前
甜甜刚完成签到,获得积分10
4秒前
5秒前
脑洞疼应助搞份炸鸡778采纳,获得10
5秒前
包容的亦竹完成签到,获得积分10
5秒前
小可完成签到 ,获得积分10
5秒前
kimi_saigou完成签到,获得积分10
11秒前
12秒前
12秒前
222完成签到,获得积分10
12秒前
12秒前
orixero应助老板别打烊采纳,获得10
13秒前
机智的夜云完成签到,获得积分10
13秒前
蝶恋花完成签到,获得积分10
13秒前
cyn完成签到,获得积分10
14秒前
傻傻乐完成签到,获得积分10
14秒前
机灵夏云完成签到,获得积分10
14秒前
芒夏露秋完成签到,获得积分10
15秒前
酷波er应助兜兜采纳,获得10
16秒前
zxy发布了新的文献求助10
17秒前
11完成签到,获得积分10
17秒前
学木完成签到,获得积分20
18秒前
KETU发布了新的文献求助10
19秒前
19秒前
20秒前
奥利奥完成签到 ,获得积分10
21秒前
21秒前
丘比特应助自由访烟采纳,获得10
22秒前
英姑应助江江采纳,获得10
22秒前
24秒前
breaking完成签到,获得积分10
24秒前
包容雨雪发布了新的文献求助20
24秒前
自觉绿柏发布了新的文献求助10
25秒前
充电宝应助无私的以冬采纳,获得10
25秒前
赘婿应助suka采纳,获得10
26秒前
高分求助中
Evolution 10000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Distribution Dependent Stochastic Differential Equations 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3157832
求助须知:如何正确求助?哪些是违规求助? 2809154
关于积分的说明 7880665
捐赠科研通 2467655
什么是DOI,文献DOI怎么找? 1313641
科研通“疑难数据库(出版商)”最低求助积分说明 630467
版权声明 601943