溶剂化
电解质
化学
溶剂化壳
溶剂
无机化学
分配系数
物理化学
有机化学
电极
作者
Liyang Liu,Haiying Lu,Chao Han,Xianfei Chen,Sucheng Liu,Jiakui Zhang,Xianghong Chen,Xinyi Wang,Rui Wang,Jiantie Xu,Huan Liu,Shi Xue Dou,Weijie Li
出处
期刊:ACS Nano
[American Chemical Society]
日期:2023-11-10
卷期号:17 (22): 23065-23078
被引量:33
标识
DOI:10.1021/acsnano.3c08716
摘要
One effective solution to inhibit side reactions and Zn dendrite growth in aqueous Zn-ion batteries is to add a cosolvent into the Zn(CF3SO3)2 electrolyte, which has the potential to form a robust solid electrolyte interface composed of ZnF2 and ZnS. Nevertheless, there is still a lack of discussion on a convenient selection method for cosolvents, which can directly reflect the interactions between solvent and solute to rationally design the electrolyte solvation structure. Herein, logP, where P is the octanol-water partition coefficient, a general parameter to describe the hydrophilicity and lipophilicity of chemicals, is proposed as a standard for selecting cosolvents for Zn(CF3SO3)2 electrolyte, which is demonstrated by testing seven different types of solvents. The solvent with a logP value similar to that of the salt anion CF3SO3- can interact with CF3SO3-, Zn2+, and H2O, leading to a reconstruction of the electrolyte solvation structure. To prove the concept, methyl acetate (MA) is demonstrated as an example due to its similar logP value to that of CF3SO3-. Both the experimental and theoretical results illustrate that MA molecules not only enter into the solvation shell of CF3SO3- but also coordinate with Zn2+ or H2O, forming an MA and CF3SO3- involved core-shell solvation structure. The special solvation structure reduces H2O activity and contributes to forming an anion-induced ZnCO3-ZnF2-rich solid electrolyte interface. As a result, the Zn||Zn cell and Zn||NaV3O8·1.5H2O cell with MA-involved electrolyte exhibit superior performances to that with the MA-free electrolyte. This work provides an insight into electrolyte design via salt anion chemistry for high-performance Zn batteries.
科研通智能强力驱动
Strongly Powered by AbleSci AI