HPTA: A High Performance Transformer Accelerator Based on FPGA

现场可编程门阵列 变压器 计算机科学 编码器 嵌入式系统 计算机硬件 计算机体系结构 电气工程 工程类 电压 操作系统
作者
Yuntao Han,Qiang Liu
标识
DOI:10.1109/fpl60245.2023.00012
摘要

The transformer neural networks have achieved remarkable performance in both Natural Language Processing (NLP) and Computer Vision (CV) applications, with encoder-decoder architecture based on attention layers. However, implementing transformers on resource-constrained devices presents challenges due to the super-large network structures and nontrivial dataflows. Field-Programmable Gate Arrays (FPGA) have been a promising platform for Neural Network (NN) acceleration due to their design flexibility and customization. Existing FPGA-based implementations of transformers face efficiency and generality issues. This paper proposes HPTA, a high-performance accelerator for implementing transformers on FPGA. We analyze the structural features of transformer networks and design the accelerator with configurable processing element, optimized data selection and arrangement and efficient memory subsystem, to support various transformers. We evaluate the performance of HPTA with BERT and Swin Transformer, the typical transformer models in NLP and CV. HPTA achieves up to 44× and 29× inference time reductions compared with the CPU implementation, and up to 17× and 10x energy efficiency improvements compared with the GPU implementation, for BERT and Swin Transformer, respectively. Compared to the existing FPGA-based accelerators, HPTA shows performance improvements up to 1.3× and 1.8× in inference time compared to NPE and Vis-TOP, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
戒酒完成签到,获得积分10
1秒前
1秒前
ericssong发布了新的文献求助10
1秒前
Ican发布了新的文献求助10
1秒前
2秒前
Akim应助赖同学采纳,获得10
2秒前
3秒前
762323661完成签到,获得积分10
3秒前
3秒前
chen完成签到,获得积分10
4秒前
小饼干发布了新的文献求助10
4秒前
ljlj发布了新的文献求助10
4秒前
4秒前
偷喝汽水完成签到,获得积分10
5秒前
杜文彦完成签到,获得积分10
5秒前
XinyuLu完成签到,获得积分10
5秒前
112233发布了新的文献求助10
6秒前
迅速芷容完成签到 ,获得积分10
6秒前
wangjiyao完成签到,获得积分10
6秒前
JamesPei应助追光少年采纳,获得10
7秒前
mayxmzhang完成签到,获得积分10
7秒前
7秒前
天天快乐应助bonchat采纳,获得10
8秒前
清新的Q发布了新的文献求助10
9秒前
9秒前
万能图书馆应助猪头采纳,获得10
9秒前
dd完成签到,获得积分10
9秒前
彭于晏应助llll采纳,获得10
9秒前
充电宝应助阿居采纳,获得10
9秒前
王赟晖发布了新的文献求助10
10秒前
小杭76应助LEI采纳,获得10
10秒前
虚幻的曼冬应助小超人采纳,获得10
10秒前
BareBear应助舒适含巧采纳,获得10
10秒前
11秒前
2464259931完成签到,获得积分10
13秒前
难过摩托发布了新的文献求助10
13秒前
复杂忻完成签到,获得积分10
13秒前
13秒前
13秒前
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Vertebrate Palaeontology, 5th Edition 340
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5258146
求助须知:如何正确求助?哪些是违规求助? 4420085
关于积分的说明 13759156
捐赠科研通 4293598
什么是DOI,文献DOI怎么找? 2356080
邀请新用户注册赠送积分活动 1352449
关于科研通互助平台的介绍 1313237