Linear and nonlinear ensemble deep learning models for karst spring discharge forecasting

计算机科学 集成学习 非线性系统 支持向量机 人工智能 Boosting(机器学习) 集合预报 机器学习 量子力学 物理
作者
Renjie Zhou,Renjie Zhou
出处
期刊:Journal of Hydrology [Elsevier BV]
卷期号:627: 130394-130394 被引量:2
标识
DOI:10.1016/j.jhydrol.2023.130394
摘要

Forecasting karst spring discharge is crucial for groundwater resource management in karst aquifers. These aquifers, with their inherent heterogeneity and complexity influenced by a myriad of environmental factors and hydrological processes, often show nonlinear and nonstationary behaviors. This study introduces novel multivariate multi-step ensemble models, both linear and nonlinear, to forecast karst spring discharge based on predictions from long short-term memory (LSTM), gated recurrent units (GRU) and one-dimensional convolutional neural network (1D-CNN). Linear and nonlinear ensemble learners including simple average method (SAM), linear regression (LR) and support vector regression (SVR) with Bayesian optimization (BO) are used to aggregate obtained results from base models and produce the final ensemble results. These proposed models, named as Ensem-SAM, Ensem-LR and Ensem-SVR-BO, are implemented for daily spring discharge forecasting across various lead times and time steps at Barton Springs, Texas, USA. Notably, these ensemble models outperform the individual base models in prediction accuracy and consistency. The results demonstrate that the ensemble framework can effectively leverage the strengths of diverse deep learning models and complement their limitations, thereby gaining strong generalization capabilities and robust performance, especially with diversiform and nonlinear data. The most marked disparities between individual base models and ensemble models arise with a short time step or a long lead time. Among all, Ensem-SVR-BO exhibits the best generalization capability and delivers accurate and robust prediction results even when one or all base models stuck in local optima.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
王腾飞应助seattle采纳,获得50
3秒前
田様应助飘柔666采纳,获得10
5秒前
易安完成签到,获得积分10
6秒前
曾经荔枝完成签到,获得积分10
6秒前
缓慢的涵瑶应助seattle采纳,获得50
7秒前
10秒前
11秒前
12秒前
顾矜应助lili采纳,获得10
14秒前
吉时发布了新的文献求助10
15秒前
在水一方应助MikeBot采纳,获得10
16秒前
量子星尘发布了新的文献求助10
16秒前
晚芦完成签到,获得积分10
16秒前
沉迷学习的华夫饼关注了科研通微信公众号
17秒前
20秒前
快乐排骨汤完成签到 ,获得积分10
25秒前
安笙凉城完成签到,获得积分10
27秒前
27秒前
28秒前
28秒前
甜甜问儿完成签到,获得积分10
28秒前
HJY完成签到 ,获得积分10
28秒前
吉时完成签到,获得积分20
29秒前
lily完成签到 ,获得积分10
30秒前
乔烨磊发布了新的文献求助10
32秒前
15759869988发布了新的文献求助10
32秒前
华仔应助清爽的尔白采纳,获得10
33秒前
33秒前
36秒前
40秒前
42秒前
42秒前
修明ing完成签到 ,获得积分20
43秒前
gentille完成签到,获得积分10
44秒前
MikeBot发布了新的文献求助10
45秒前
舒适数据线给fzx的求助进行了留言
46秒前
46秒前
斯文败类应助卢雨生采纳,获得10
49秒前
49秒前
Owen应助科研通管家采纳,获得10
50秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4010600
求助须知:如何正确求助?哪些是违规求助? 3550359
关于积分的说明 11305499
捐赠科研通 3284744
什么是DOI,文献DOI怎么找? 1810836
邀请新用户注册赠送积分活动 886556
科研通“疑难数据库(出版商)”最低求助积分说明 811499