Linear and nonlinear ensemble deep learning models for karst spring discharge forecasting

计算机科学 集成学习 非线性系统 支持向量机 人工智能 Boosting(机器学习) 集合预报 机器学习 量子力学 物理
作者
Renjie Zhou,Renjie Zhou
出处
期刊:Journal of Hydrology [Elsevier BV]
卷期号:627: 130394-130394 被引量:2
标识
DOI:10.1016/j.jhydrol.2023.130394
摘要

Forecasting karst spring discharge is crucial for groundwater resource management in karst aquifers. These aquifers, with their inherent heterogeneity and complexity influenced by a myriad of environmental factors and hydrological processes, often show nonlinear and nonstationary behaviors. This study introduces novel multivariate multi-step ensemble models, both linear and nonlinear, to forecast karst spring discharge based on predictions from long short-term memory (LSTM), gated recurrent units (GRU) and one-dimensional convolutional neural network (1D-CNN). Linear and nonlinear ensemble learners including simple average method (SAM), linear regression (LR) and support vector regression (SVR) with Bayesian optimization (BO) are used to aggregate obtained results from base models and produce the final ensemble results. These proposed models, named as Ensem-SAM, Ensem-LR and Ensem-SVR-BO, are implemented for daily spring discharge forecasting across various lead times and time steps at Barton Springs, Texas, USA. Notably, these ensemble models outperform the individual base models in prediction accuracy and consistency. The results demonstrate that the ensemble framework can effectively leverage the strengths of diverse deep learning models and complement their limitations, thereby gaining strong generalization capabilities and robust performance, especially with diversiform and nonlinear data. The most marked disparities between individual base models and ensemble models arise with a short time step or a long lead time. Among all, Ensem-SVR-BO exhibits the best generalization capability and delivers accurate and robust prediction results even when one or all base models stuck in local optima.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
拉拉啊了发布了新的文献求助10
1秒前
lifen发布了新的文献求助10
1秒前
1秒前
烟花应助1111采纳,获得10
1秒前
小w完成签到,获得积分10
2秒前
警长发布了新的文献求助10
2秒前
naomi完成签到,获得积分10
2秒前
尔玉完成签到 ,获得积分10
2秒前
3秒前
biofresh完成签到,获得积分10
3秒前
英勇真发布了新的文献求助10
4秒前
酷波er应助577采纳,获得10
4秒前
菲菲不是飞飞完成签到,获得积分10
4秒前
勤奋的含烟给勤奋的含烟的求助进行了留言
5秒前
Hello应助penguin采纳,获得10
5秒前
隐形曼青应助方源采纳,获得10
5秒前
5秒前
CodeCraft应助荔枝酱果冻采纳,获得10
5秒前
golfgold完成签到,获得积分10
5秒前
6秒前
flow发布了新的文献求助10
6秒前
6秒前
ycool完成签到 ,获得积分10
6秒前
桐桐应助凡仔采纳,获得10
7秒前
暴躁的元灵完成签到,获得积分10
7秒前
7秒前
务实时光发布了新的文献求助10
8秒前
科研通AI5应助玖玖采纳,获得10
8秒前
笑点低凌珍完成签到 ,获得积分10
8秒前
大黄发布了新的文献求助10
8秒前
NIkon完成签到,获得积分10
8秒前
9秒前
脑洞疼应助昵称呢采纳,获得30
9秒前
9秒前
科研通AI5应助拉拉啊了采纳,获得10
9秒前
9秒前
小青椒应助ludong_0采纳,获得200
9秒前
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Feigin and Cherry's Textbook of Pediatric Infectious Diseases Ninth Edition 2024 4000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
Binary Alloy Phase Diagrams, 2nd Edition 1000
青少年心理适应性量表(APAS)使用手册 700
Air Transportation A Global Management Perspective 9th Edition 700
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5001832
求助须知:如何正确求助?哪些是违规求助? 4246915
关于积分的说明 13231512
捐赠科研通 4045758
什么是DOI,文献DOI怎么找? 2213210
邀请新用户注册赠送积分活动 1223392
关于科研通互助平台的介绍 1143701