Association between triglyceride-glucose index and in-hospital mortality in critically ill patients with sepsis: analysis of the MIMIC-IV database

医学 重症监护室 败血症 回顾性队列研究 内科学 子群分析 多元分析 急诊医学 重症监护医学 荟萃分析
作者
Rui Zheng,Songzan Qian,Yiyi Shi,Chen Lou,Honglei Xu,Jingye Pan
出处
期刊:Cardiovascular Diabetology [BioMed Central]
卷期号:22 (1) 被引量:67
标识
DOI:10.1186/s12933-023-02041-w
摘要

Abstract Background This study aimed to explore the association between the triglyceride-glucose (TyG) index and the risk of in-hospital mortality in critically ill patients with sepsis. Methods This was a retrospective observational cohort study and data were obtained from the Medical Information Mart for Intensive Care-IV (MIMIC IV2.2) database. The participants were grouped into three groups according to the TyG index tertiles. The primary outcome was in-hospital all-cause mortality. Multivariable logistics proportional regression analysis and restricted cubic spline regression was used to evaluate the association between the TyG index and in-hospital mortality in patients with sepsis. In sensitivity analysis, the feature importance of the TyG index was initially determined using machine learning algorithms and subgroup analysis based on different subgroups was also performed. Results 1,257 patients (56.88% men) were included in the study. The in-hospital, 28-day and intensive care unit (ICU) mortality were 21.40%, 26.17%, and 15.43% respectively. Multivariate logistics regression analysis showed that the TyG index was independently associated with an elevated risk of in-hospital mortality (OR 1.440 [95% CI 1.106–1.875]; P = 0.00673), 28-day mortality (OR 1.391; [95% CI 1.52–1.678]; P = 0.01414) and ICU mortality (OR 1.597; [95% CI 1.188–2.147]; P = 0.00266). The restricted cubic spline regression model revealed that the risks of in-hospital, 28-day, and ICU mortality increased linearly with increasing TyG index. Sensitivity analysis indicate that the effect size and direction in different subgroups are consistent, the results is stability. Additionally, the machine learning results suggest that TyG index is an important feature for the outcomes of sepsis. Conclusion Our study indicates that a high TyG index is associated with an increased in-hospital mortality in critically ill sepsis patients. Larger prospective studies are required to confirm these findings.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
炙热芷蕊发布了新的文献求助10
1秒前
1秒前
思源应助mic采纳,获得10
1秒前
1秒前
WJM完成签到,获得积分10
1秒前
小二郎应助Syang采纳,获得10
4秒前
una完成签到 ,获得积分10
4秒前
852发布了新的文献求助10
5秒前
拜拜拜发布了新的文献求助10
5秒前
6秒前
美好水池完成签到,获得积分10
7秒前
7秒前
8秒前
库库熬夜发布了新的文献求助10
9秒前
10秒前
略微妙蛙完成签到 ,获得积分10
11秒前
丁丁丁发布了新的文献求助10
12秒前
huodian4完成签到,获得积分10
12秒前
13秒前
13秒前
14秒前
15秒前
wang完成签到,获得积分10
15秒前
16秒前
量子星尘发布了新的文献求助50
16秒前
16秒前
17秒前
???发布了新的文献求助10
18秒前
美好水池发布了新的文献求助10
19秒前
19秒前
19秒前
20秒前
20秒前
20秒前
xianbei发布了新的文献求助10
20秒前
gao发布了新的文献求助10
20秒前
可爱的函函应助淡淡念桃采纳,获得10
20秒前
海豚有海完成签到 ,获得积分10
21秒前
XX完成签到,获得积分10
21秒前
梁儒涛发布了新的文献求助10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
SOFT MATTER SERIES Volume 22 Soft Matter in Foods 1000
Zur lokalen Geoidbestimmung aus terrestrischen Messungen vertikaler Schweregradienten 1000
Storie e culture della televisione 500
Selected research on camelid physiology and nutrition 500
《2023南京市住宿行业发展报告》 500
Architectural Corrosion and Critical Infrastructure 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4886348
求助须知:如何正确求助?哪些是违规求助? 4171310
关于积分的说明 12944605
捐赠科研通 3931793
什么是DOI,文献DOI怎么找? 2157251
邀请新用户注册赠送积分活动 1175706
关于科研通互助平台的介绍 1080197