Optimization of cross-border e-commerce marketing strategy based on deep learning model

卷积神经网络 深度学习 计算机科学 市场营销策略 排名(信息检索) 人工神经网络 人工智能 电子商务 产品(数学) 营销 机器学习 业务 数学 万维网 几何学
作者
Rui Cui
出处
期刊:Applied mathematics and nonlinear sciences [De Gruyter]
卷期号:9 (1) 被引量:2
标识
DOI:10.2478/amns.2023.2.00176
摘要

Abstract The advent of the era of artificial intelligence provides technical support for cross-border e-commerce marketing to break the traditional competitive model and make efforts to build an online shopping platform that can meet international sellers’ and consumers’ transactions at any time around the world. This paper constructs a cross-border e-commerce marketing strategy optimization model based on deep reinforcement learning and convolutional neural network under artificial intelligence technology and explores the optimization method of the cross-border e-commerce marketing strategy by verifying the accuracy of the model and mining and analyzing the example data of Company A’s cross-border e-commerce platform. From the data, the accuracy of the deep convolutional neural network model is 99.47%, the proportion of beauty and beauty, mother and child care, and medical and health products in the product marketing strategy is 79.92%, 71.48%, and 59.93%, respectively, and the proportion of search traffic of the top three keywords in the search channel marketing is 42.69%, 31.23%, and 22.65%, respectively, and the ranking of the bottom The average traffic search of the seven types of keywords is less than 10%. This also shows that the optimization of a cross-border e-commerce marketing strategy based on the deep convolutional neural network can clearly analyze the data in the current marketing strategy, guide how to optimize the marketing strategy based on the data, and then improve the economic benefits of cross-border e-commerce enterprises. Applying a deep convolutional neural network model in a cross-border e-commerce marketing strategy also provides a direction for the new development field of artificial intelligence technology, which is beneficial to the further development of artificial intelligence technology.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
领导范儿应助包容柜子采纳,获得10
1秒前
繁星完成签到 ,获得积分10
3秒前
5秒前
6秒前
似乎一场梦完成签到 ,获得积分10
6秒前
dio小面包完成签到 ,获得积分10
7秒前
8秒前
skylee完成签到,获得积分10
8秒前
9秒前
幸福小丸子完成签到,获得积分10
9秒前
困困包发布了新的文献求助10
11秒前
Xjx6519发布了新的文献求助10
12秒前
桐桐应助专注的水壶采纳,获得10
15秒前
斯文败类应助ZeZeZe采纳,获得10
15秒前
16秒前
情怀应助FUn采纳,获得10
17秒前
wanci应助Xjx6519采纳,获得10
18秒前
peng完成签到,获得积分10
19秒前
19秒前
21秒前
21秒前
张玮完成签到,获得积分20
28秒前
科研通AI6应助zhoumaoyuan采纳,获得10
29秒前
科研通AI6应助zhoumaoyuan采纳,获得10
29秒前
刻苦的元风完成签到,获得积分10
31秒前
32秒前
幽默滑板完成签到 ,获得积分10
35秒前
kei完成签到,获得积分10
37秒前
John_sdu完成签到,获得积分10
37秒前
38秒前
39秒前
寻道图强应助kingwill采纳,获得50
40秒前
ding应助张玮采纳,获得10
41秒前
花莫凋零发布了新的文献求助10
44秒前
46秒前
JJJ发布了新的文献求助30
47秒前
虚幻人完成签到,获得积分10
48秒前
面团应助东方越彬采纳,获得10
48秒前
从容的丹南完成签到 ,获得积分10
48秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5557785
求助须知:如何正确求助?哪些是违规求助? 4642836
关于积分的说明 14669258
捐赠科研通 4584253
什么是DOI,文献DOI怎么找? 2514716
邀请新用户注册赠送积分活动 1488897
关于科研通互助平台的介绍 1459566