Optimization of cross-border e-commerce marketing strategy based on deep learning model

卷积神经网络 深度学习 计算机科学 市场营销策略 排名(信息检索) 人工神经网络 人工智能 电子商务 产品(数学) 营销 机器学习 业务 数学 万维网 几何学
作者
Rui Cui
出处
期刊:Applied mathematics and nonlinear sciences [De Gruyter]
卷期号:9 (1) 被引量:2
标识
DOI:10.2478/amns.2023.2.00176
摘要

Abstract The advent of the era of artificial intelligence provides technical support for cross-border e-commerce marketing to break the traditional competitive model and make efforts to build an online shopping platform that can meet international sellers’ and consumers’ transactions at any time around the world. This paper constructs a cross-border e-commerce marketing strategy optimization model based on deep reinforcement learning and convolutional neural network under artificial intelligence technology and explores the optimization method of the cross-border e-commerce marketing strategy by verifying the accuracy of the model and mining and analyzing the example data of Company A’s cross-border e-commerce platform. From the data, the accuracy of the deep convolutional neural network model is 99.47%, the proportion of beauty and beauty, mother and child care, and medical and health products in the product marketing strategy is 79.92%, 71.48%, and 59.93%, respectively, and the proportion of search traffic of the top three keywords in the search channel marketing is 42.69%, 31.23%, and 22.65%, respectively, and the ranking of the bottom The average traffic search of the seven types of keywords is less than 10%. This also shows that the optimization of a cross-border e-commerce marketing strategy based on the deep convolutional neural network can clearly analyze the data in the current marketing strategy, guide how to optimize the marketing strategy based on the data, and then improve the economic benefits of cross-border e-commerce enterprises. Applying a deep convolutional neural network model in a cross-border e-commerce marketing strategy also provides a direction for the new development field of artificial intelligence technology, which is beneficial to the further development of artificial intelligence technology.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
JamesPei应助zozo采纳,获得10
刚刚
刚刚
1秒前
1秒前
oh应助勤奋的晋鹏采纳,获得10
3秒前
Singularity应助清脆的书桃采纳,获得10
4秒前
君君发布了新的文献求助10
4秒前
KYH完成签到,获得积分10
4秒前
5秒前
鹿茸与共发布了新的文献求助10
5秒前
5秒前
斯文败类应助djbj2022采纳,获得10
6秒前
8秒前
Ly0818完成签到,获得积分10
9秒前
汉堡包应助luanzhaohui采纳,获得50
9秒前
llliu完成签到,获得积分20
9秒前
邱丘邱发布了新的文献求助15
10秒前
搜集达人应助宇文数学采纳,获得10
11秒前
初一完成签到,获得积分10
11秒前
昵称有敏感词完成签到,获得积分10
11秒前
苗条棒棒糖完成签到,获得积分10
12秒前
13秒前
llliu发布了新的文献求助10
13秒前
13秒前
14秒前
5High_0完成签到 ,获得积分10
14秒前
15秒前
15秒前
跳跃的梦凡完成签到,获得积分10
15秒前
yyy发布了新的文献求助10
15秒前
17秒前
许愿非树完成签到,获得积分10
18秒前
Dirsch发布了新的文献求助10
19秒前
djbj2022发布了新的文献求助10
19秒前
20秒前
英吉利25发布了新的文献求助10
20秒前
22秒前
大意的天亦完成签到,获得积分10
23秒前
24秒前
乐乐应助神雕侠采纳,获得10
24秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3998724
求助须知:如何正确求助?哪些是违规求助? 3538169
关于积分的说明 11273611
捐赠科研通 3277151
什么是DOI,文献DOI怎么找? 1807423
邀请新用户注册赠送积分活动 883867
科研通“疑难数据库(出版商)”最低求助积分说明 810070