Optimization of cross-border e-commerce marketing strategy based on deep learning model

卷积神经网络 深度学习 计算机科学 市场营销策略 排名(信息检索) 人工神经网络 人工智能 电子商务 产品(数学) 营销 机器学习 业务 数学 万维网 几何学
作者
Rui Cui
出处
期刊:Applied mathematics and nonlinear sciences [De Gruyter]
卷期号:9 (1) 被引量:1
标识
DOI:10.2478/amns.2023.2.00176
摘要

Abstract The advent of the era of artificial intelligence provides technical support for cross-border e-commerce marketing to break the traditional competitive model and make efforts to build an online shopping platform that can meet international sellers’ and consumers’ transactions at any time around the world. This paper constructs a cross-border e-commerce marketing strategy optimization model based on deep reinforcement learning and convolutional neural network under artificial intelligence technology and explores the optimization method of the cross-border e-commerce marketing strategy by verifying the accuracy of the model and mining and analyzing the example data of Company A’s cross-border e-commerce platform. From the data, the accuracy of the deep convolutional neural network model is 99.47%, the proportion of beauty and beauty, mother and child care, and medical and health products in the product marketing strategy is 79.92%, 71.48%, and 59.93%, respectively, and the proportion of search traffic of the top three keywords in the search channel marketing is 42.69%, 31.23%, and 22.65%, respectively, and the ranking of the bottom The average traffic search of the seven types of keywords is less than 10%. This also shows that the optimization of a cross-border e-commerce marketing strategy based on the deep convolutional neural network can clearly analyze the data in the current marketing strategy, guide how to optimize the marketing strategy based on the data, and then improve the economic benefits of cross-border e-commerce enterprises. Applying a deep convolutional neural network model in a cross-border e-commerce marketing strategy also provides a direction for the new development field of artificial intelligence technology, which is beneficial to the further development of artificial intelligence technology.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
廿七发布了新的文献求助10
刚刚
六清完成签到,获得积分10
1秒前
1秒前
1秒前
谢x07完成签到,获得积分10
1秒前
2秒前
2秒前
Owen应助Mannose采纳,获得30
3秒前
cc完成签到,获得积分10
3秒前
爱喝酒的酒葫芦完成签到,获得积分10
4秒前
高高梦山完成签到 ,获得积分10
4秒前
4秒前
talksilence完成签到,获得积分10
4秒前
5秒前
583420完成签到 ,获得积分10
5秒前
6秒前
完美世界应助大力世界采纳,获得10
7秒前
cnmkyt发布了新的文献求助10
7秒前
执着半烟完成签到,获得积分10
7秒前
孤独的丹翠完成签到,获得积分20
7秒前
susu应助flywo采纳,获得10
8秒前
NexusExplorer应助wangmp66采纳,获得10
8秒前
尼古丁_真发布了新的文献求助10
9秒前
zw发布了新的文献求助10
10秒前
10秒前
想看文献的人完成签到,获得积分10
10秒前
怕孤独的可乐完成签到 ,获得积分10
10秒前
qi完成签到,获得积分10
11秒前
李晨光完成签到,获得积分10
12秒前
12秒前
jks发布了新的文献求助10
13秒前
北执完成签到,获得积分10
13秒前
刘企盼完成签到,获得积分10
14秒前
万能图书馆应助VLH采纳,获得10
14秒前
labxgr完成签到,获得积分10
15秒前
小二郎应助可靠的南霜采纳,获得10
15秒前
15秒前
Selenge发布了新的文献求助10
15秒前
小蘑菇应助齐天采纳,获得10
16秒前
16秒前
高分求助中
System in Systemic Functional Linguistics A System-based Theory of Language 1000
The Data Economy: Tools and Applications 1000
Essentials of thematic analysis 700
Mantiden - Faszinierende Lauerjäger – Buch gebraucht kaufen 600
PraxisRatgeber Mantiden., faszinierende Lauerjäger. – Buch gebraucht kaufe 600
A Dissection Guide & Atlas to the Rabbit 600
Внешняя политика КНР: о сущности внешнеполитического курса современного китайского руководства 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3118300
求助须知:如何正确求助?哪些是违规求助? 2768385
关于积分的说明 7696595
捐赠科研通 2423800
什么是DOI,文献DOI怎么找? 1287323
科研通“疑难数据库(出版商)”最低求助积分说明 620541
版权声明 599906