Optimization of cross-border e-commerce marketing strategy based on deep learning model

卷积神经网络 深度学习 计算机科学 市场营销策略 排名(信息检索) 人工神经网络 人工智能 电子商务 产品(数学) 营销 机器学习 业务 数学 万维网 几何学
作者
Rui Cui
出处
期刊:Applied mathematics and nonlinear sciences [De Gruyter]
卷期号:9 (1) 被引量:2
标识
DOI:10.2478/amns.2023.2.00176
摘要

Abstract The advent of the era of artificial intelligence provides technical support for cross-border e-commerce marketing to break the traditional competitive model and make efforts to build an online shopping platform that can meet international sellers’ and consumers’ transactions at any time around the world. This paper constructs a cross-border e-commerce marketing strategy optimization model based on deep reinforcement learning and convolutional neural network under artificial intelligence technology and explores the optimization method of the cross-border e-commerce marketing strategy by verifying the accuracy of the model and mining and analyzing the example data of Company A’s cross-border e-commerce platform. From the data, the accuracy of the deep convolutional neural network model is 99.47%, the proportion of beauty and beauty, mother and child care, and medical and health products in the product marketing strategy is 79.92%, 71.48%, and 59.93%, respectively, and the proportion of search traffic of the top three keywords in the search channel marketing is 42.69%, 31.23%, and 22.65%, respectively, and the ranking of the bottom The average traffic search of the seven types of keywords is less than 10%. This also shows that the optimization of a cross-border e-commerce marketing strategy based on the deep convolutional neural network can clearly analyze the data in the current marketing strategy, guide how to optimize the marketing strategy based on the data, and then improve the economic benefits of cross-border e-commerce enterprises. Applying a deep convolutional neural network model in a cross-border e-commerce marketing strategy also provides a direction for the new development field of artificial intelligence technology, which is beneficial to the further development of artificial intelligence technology.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
酷炫的安雁完成签到 ,获得积分10
刚刚
李新颖完成签到 ,获得积分10
刚刚
刚刚
Soluna发布了新的文献求助10
刚刚
1秒前
2秒前
2秒前
2秒前
852应助yizili采纳,获得10
3秒前
3秒前
3秒前
静一完成签到 ,获得积分10
5秒前
6秒前
powozhi13579发布了新的文献求助10
6秒前
hardtime发布了新的文献求助10
7秒前
单薄靖儿完成签到,获得积分10
8秒前
甜蜜冰菱发布了新的文献求助10
8秒前
8秒前
9秒前
Lz完成签到 ,获得积分10
9秒前
科研通AI6应助哆来米采纳,获得10
9秒前
yuzhongLuo完成签到,获得积分10
9秒前
abc完成签到,获得积分10
9秒前
李雷完成签到 ,获得积分10
9秒前
10秒前
明亮的小懒虫完成签到 ,获得积分10
11秒前
yahonyoyoyo发布了新的文献求助10
11秒前
上官若男应助Sakura采纳,获得10
11秒前
小马甲应助超重美人采纳,获得10
12秒前
caoyulongchn完成签到,获得积分10
12秒前
ZYY发布了新的文献求助10
12秒前
101完成签到,获得积分10
12秒前
yr发布了新的文献求助10
12秒前
livra1058完成签到,获得积分10
13秒前
13秒前
皮皮鲲er发布了新的文献求助10
14秒前
852应助D调的华丽采纳,获得10
16秒前
科研通AI2S应助dddjs采纳,获得10
17秒前
abc发布了新的文献求助10
18秒前
科研通AI6应助asdfghjkl采纳,获得10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1541
Binary Alloy Phase Diagrams, 2nd Edition 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
A Technologist’s Guide to Performing Sleep Studies 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
Using Genomics to Understand How Invaders May Adapt: A Marine Perspective 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5498977
求助须知:如何正确求助?哪些是违规求助? 4596023
关于积分的说明 14451856
捐赠科研通 4529128
什么是DOI,文献DOI怎么找? 2481834
邀请新用户注册赠送积分活动 1465825
关于科研通互助平台的介绍 1438777