亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Optimization of cross-border e-commerce marketing strategy based on deep learning model

卷积神经网络 深度学习 计算机科学 市场营销策略 排名(信息检索) 人工神经网络 人工智能 电子商务 产品(数学) 营销 机器学习 业务 数学 万维网 几何学
作者
Rui Cui
出处
期刊:Applied mathematics and nonlinear sciences [De Gruyter]
卷期号:9 (1) 被引量:2
标识
DOI:10.2478/amns.2023.2.00176
摘要

Abstract The advent of the era of artificial intelligence provides technical support for cross-border e-commerce marketing to break the traditional competitive model and make efforts to build an online shopping platform that can meet international sellers’ and consumers’ transactions at any time around the world. This paper constructs a cross-border e-commerce marketing strategy optimization model based on deep reinforcement learning and convolutional neural network under artificial intelligence technology and explores the optimization method of the cross-border e-commerce marketing strategy by verifying the accuracy of the model and mining and analyzing the example data of Company A’s cross-border e-commerce platform. From the data, the accuracy of the deep convolutional neural network model is 99.47%, the proportion of beauty and beauty, mother and child care, and medical and health products in the product marketing strategy is 79.92%, 71.48%, and 59.93%, respectively, and the proportion of search traffic of the top three keywords in the search channel marketing is 42.69%, 31.23%, and 22.65%, respectively, and the ranking of the bottom The average traffic search of the seven types of keywords is less than 10%. This also shows that the optimization of a cross-border e-commerce marketing strategy based on the deep convolutional neural network can clearly analyze the data in the current marketing strategy, guide how to optimize the marketing strategy based on the data, and then improve the economic benefits of cross-border e-commerce enterprises. Applying a deep convolutional neural network model in a cross-border e-commerce marketing strategy also provides a direction for the new development field of artificial intelligence technology, which is beneficial to the further development of artificial intelligence technology.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小新完成签到 ,获得积分10
5秒前
Akim应助科研通管家采纳,获得10
18秒前
18秒前
18秒前
18秒前
倪妮发布了新的文献求助10
57秒前
倪妮完成签到,获得积分10
1分钟前
芝士酱完成签到,获得积分10
1分钟前
2分钟前
2分钟前
2分钟前
2分钟前
洲洲发布了新的文献求助10
2分钟前
星星发布了新的文献求助10
2分钟前
2分钟前
自律发布了新的文献求助10
2分钟前
XIAJIN完成签到,获得积分10
2分钟前
量子星尘发布了新的文献求助150
2分钟前
electricelectric完成签到,获得积分10
3分钟前
星星发布了新的文献求助10
3分钟前
自律完成签到,获得积分10
3分钟前
Lexi完成签到 ,获得积分10
3分钟前
星星发布了新的文献求助10
4分钟前
4分钟前
神勇绮琴发布了新的文献求助10
4分钟前
4分钟前
4分钟前
田様应助洲洲采纳,获得10
4分钟前
4分钟前
zzzzz完成签到 ,获得积分10
4分钟前
黄桃发布了新的文献求助10
5分钟前
胡萝卜完成签到,获得积分10
5分钟前
科研通AI5应助洁净的千凡采纳,获得30
5分钟前
5分钟前
5分钟前
科研通AI5应助ycliang采纳,获得10
6分钟前
nessa完成签到 ,获得积分10
6分钟前
科研通AI6应助科研通管家采纳,获得10
6分钟前
打打应助科研通管家采纳,获得10
6分钟前
6分钟前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Handbook of Social and Emotional Learning 800
Risankizumab Versus Ustekinumab For Patients with Moderate to Severe Crohn's Disease: Results from the Phase 3B SEQUENCE Study 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5137486
求助须知:如何正确求助?哪些是违规求助? 4337281
关于积分的说明 13511327
捐赠科研通 4175861
什么是DOI,文献DOI怎么找? 2289760
邀请新用户注册赠送积分活动 1290277
关于科研通互助平台的介绍 1232004