Optimization of cross-border e-commerce marketing strategy based on deep learning model

卷积神经网络 深度学习 计算机科学 市场营销策略 排名(信息检索) 人工神经网络 人工智能 电子商务 产品(数学) 营销 机器学习 业务 数学 万维网 几何学
作者
Rui Cui
出处
期刊:Applied mathematics and nonlinear sciences [De Gruyter]
卷期号:9 (1) 被引量:2
标识
DOI:10.2478/amns.2023.2.00176
摘要

Abstract The advent of the era of artificial intelligence provides technical support for cross-border e-commerce marketing to break the traditional competitive model and make efforts to build an online shopping platform that can meet international sellers’ and consumers’ transactions at any time around the world. This paper constructs a cross-border e-commerce marketing strategy optimization model based on deep reinforcement learning and convolutional neural network under artificial intelligence technology and explores the optimization method of the cross-border e-commerce marketing strategy by verifying the accuracy of the model and mining and analyzing the example data of Company A’s cross-border e-commerce platform. From the data, the accuracy of the deep convolutional neural network model is 99.47%, the proportion of beauty and beauty, mother and child care, and medical and health products in the product marketing strategy is 79.92%, 71.48%, and 59.93%, respectively, and the proportion of search traffic of the top three keywords in the search channel marketing is 42.69%, 31.23%, and 22.65%, respectively, and the ranking of the bottom The average traffic search of the seven types of keywords is less than 10%. This also shows that the optimization of a cross-border e-commerce marketing strategy based on the deep convolutional neural network can clearly analyze the data in the current marketing strategy, guide how to optimize the marketing strategy based on the data, and then improve the economic benefits of cross-border e-commerce enterprises. Applying a deep convolutional neural network model in a cross-border e-commerce marketing strategy also provides a direction for the new development field of artificial intelligence technology, which is beneficial to the further development of artificial intelligence technology.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
一颗小白菜完成签到,获得积分10
刚刚
77发布了新的文献求助10
刚刚
llzuo完成签到,获得积分10
刚刚
苗广山完成签到,获得积分10
刚刚
斯文败类应助LLLLLL采纳,获得10
刚刚
失眠呆呆鱼完成签到 ,获得积分10
1秒前
zheng-homes发布了新的文献求助10
1秒前
锂离子完成签到,获得积分10
1秒前
包包完成签到,获得积分10
1秒前
感性的道之完成签到 ,获得积分10
2秒前
2秒前
2秒前
畅快大象完成签到,获得积分10
2秒前
雷家完成签到,获得积分10
2秒前
科研通AI6应助刻苦的千凝采纳,获得10
3秒前
3秒前
孙老师完成签到 ,获得积分10
3秒前
3秒前
汤汤杨杨完成签到,获得积分10
3秒前
EBA发布了新的文献求助10
3秒前
Swear完成签到 ,获得积分10
4秒前
科研通AI6应助yenom采纳,获得10
4秒前
zz完成签到,获得积分10
4秒前
DondeDu发布了新的文献求助20
5秒前
5秒前
15297657686完成签到,获得积分10
5秒前
12305014077发布了新的文献求助20
5秒前
鹿鹿完成签到,获得积分10
6秒前
eterny完成签到,获得积分10
6秒前
mumu发布了新的文献求助20
6秒前
Sir.夏季风发布了新的文献求助10
6秒前
LIn完成签到,获得积分10
6秒前
afrex完成签到,获得积分10
7秒前
7秒前
晚湖完成签到,获得积分10
7秒前
7秒前
刻苦的千凝完成签到,获得积分10
7秒前
Ma_Cong应助向日葵采纳,获得10
8秒前
谭小熊完成签到,获得积分10
8秒前
8秒前
高分求助中
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
Psychology for Teachers 220
On the Validity of the Independent-Particle Model and the Sum-rule Approach to the Deeply Bound States in Nuclei 220
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4598448
求助须知:如何正确求助?哪些是违规求助? 4009551
关于积分的说明 12411589
捐赠科研通 3688931
什么是DOI,文献DOI怎么找? 2033578
邀请新用户注册赠送积分活动 1066779
科研通“疑难数据库(出版商)”最低求助积分说明 951864