铁电性
原子轨道
材料科学
分子轨道
对称性破坏
凝聚态物理
双稳态
极化(电化学)
分子物理学
化学物理
电子
物理
光电子学
化学
量子力学
分子
电介质
物理化学
作者
Wei‐Qiang Liao,Yu‐Ling Zeng,Yuan‐Yuan Tang,Yuqiu Xu,Xiaoyun Huang,Hang Z. Yu,Hui‐Peng Lv,Xiao‐Gang Chen,Ren‐Gen Xiong
标识
DOI:10.1002/adma.202305471
摘要
As particles carry quantified energy, photon radiation enables orbital transitions of energy levels, leading to changes in the spin state of electrons. The resulting switchable structural bistability may bring a new paradigm for manipulating ferroelectric polarization. However, the studies on molecular orbital breaking in the ferroelectric field remain blank. Here, for the first time, a new mechanism of ferroelectrics-dual breaking of molecular orbitals and spatial symmetry, demonstrated in a photochromic organic crystal with light-induced polarization switching, is formally proposed. By alternating the ultraviolet/visible light irradiation, the states of electron spin and the radial distribution p atomic orbitals experience a change, showing a reversible switch from "shoulder-to-shoulder" form to a "head-to-head" form. This reflects a reversible conversion between π and σ bonds, which induces and couples with the variation of spatial symmetry. The intersection of spatial symmetry breaking and molecular orbital breaking in ferroelectrics present in this work will be more conducive to data encryption and anticounterfeiting.
科研通智能强力驱动
Strongly Powered by AbleSci AI