PredLLPS_PSSM: a novel predictor for liquid–liquid protein separation identification based on evolutionary information and a deep neural network

计算机科学 鉴定(生物学) 深度学习 人工智能 计算生物学 人工神经网络 模式识别(心理学) 生物 植物
作者
Shengming Zhou,Y. Z. Zhou,Tian Liu,Juanjuan Zheng,Cangzhi Jia
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:24 (5)
标识
DOI:10.1093/bib/bbad299
摘要

The formation of biomolecular condensates by liquid-liquid phase separation (LLPS) has become a universal mechanism for spatiotemporal coordination of biological activities in cells and has been widely observed to directly regulate the key cellular processes involved in cancer cell pathology. However, the complexity of protein sequences and the diversity of conformations are inherently disordered, which poses great challenges for LLPS protein calculations and experimental research. Herein, we proposed a novel predictor named PredLLPS_PSSM for LLPS protein identification based only on sequence evolution information. Because finding real and reliable samples is the cornerstone of building predictors, we collected anew and collated the LLPS proteins from the latest versions of three databases. By comparing the performance of the position-specific score matrix (PSSM) and word embedding, PredLLPS_PSSM combined PSSM-based information and two deep learning frameworks. Independent tests using three existing independent test datasets and two newly constructed independent test datasets demonstrated the superiority of PredLLPS_PSSM compared with state-of-the-art methods. Furthermore, we tested PredLLPS_PSSM on nine experimentally identified LLPS proteins from three insects that were not included in any of the databases. In addition, the powerful Shapley Additive exPlanation algorithm and heatmap were applied to find the most critical amino acids relevant to LLPS.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
darkage发布了新的文献求助10
刚刚
今后应助达达采纳,获得10
刚刚
lcxszsd完成签到 ,获得积分10
2秒前
上官若男应助S8采纳,获得10
2秒前
兰永强完成签到,获得积分10
2秒前
科研通AI2S应助changjiaren采纳,获得10
4秒前
5秒前
5秒前
独特的忆彤完成签到 ,获得积分10
5秒前
天南完成签到,获得积分10
6秒前
9秒前
辛勤夜安完成签到 ,获得积分10
9秒前
典雅的道罡完成签到,获得积分10
10秒前
大牙完成签到,获得积分10
10秒前
fang完成签到,获得积分20
12秒前
12秒前
Hello应助执着烧鹅采纳,获得10
13秒前
14秒前
符映菱完成签到,获得积分10
15秒前
chcmy发布了新的文献求助10
15秒前
18秒前
IBMffff应助爱吃火锅采纳,获得50
19秒前
达达发布了新的文献求助10
19秒前
大白沙子完成签到,获得积分10
20秒前
bidabida完成签到,获得积分10
21秒前
味子橘完成签到 ,获得积分10
22秒前
无奈凝云发布了新的文献求助10
22秒前
海阔天空发布了新的文献求助10
22秒前
liulongchao发布了新的文献求助10
23秒前
24秒前
晚意意意意意完成签到 ,获得积分10
26秒前
28秒前
28秒前
30秒前
30秒前
稳重飞飞完成签到,获得积分10
30秒前
执着烧鹅发布了新的文献求助10
31秒前
张宝发布了新的文献求助10
32秒前
课呢完成签到,获得积分10
32秒前
32秒前
高分求助中
Spray / Wall-interaction Modelling by Dimensionless Data Analysis 2000
Mathematics and Finite Element Discretizations of Incompressible Navier—Stokes Flows 500
2-Acetyl-1-pyrroline: an important aroma component of cooked rice 500
A real-time energy management strategy based on fuzzy control and ECMS for PHEVs 400
Handbook on People's China (1957) 400
2024 Medicinal Chemistry Reviews 400
Why I Chose China [by Morris R. Wills] in "Look", February 8 and 22, 1966; 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3190254
求助须知:如何正确求助?哪些是违规求助? 2839520
关于积分的说明 8024251
捐赠科研通 2502419
什么是DOI,文献DOI怎么找? 1336504
科研通“疑难数据库(出版商)”最低求助积分说明 637841
邀请新用户注册赠送积分活动 606020