PredLLPS_PSSM: a novel predictor for liquid–liquid protein separation identification based on evolutionary information and a deep neural network

计算机科学 鉴定(生物学) 深度学习 人工智能 计算生物学 人工神经网络 模式识别(心理学) 生物 植物
作者
Shengming Zhou,Y. Z. Zhou,Tian Liu,Juanjuan Zheng,Cangzhi Jia
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:24 (5)
标识
DOI:10.1093/bib/bbad299
摘要

The formation of biomolecular condensates by liquid-liquid phase separation (LLPS) has become a universal mechanism for spatiotemporal coordination of biological activities in cells and has been widely observed to directly regulate the key cellular processes involved in cancer cell pathology. However, the complexity of protein sequences and the diversity of conformations are inherently disordered, which poses great challenges for LLPS protein calculations and experimental research. Herein, we proposed a novel predictor named PredLLPS_PSSM for LLPS protein identification based only on sequence evolution information. Because finding real and reliable samples is the cornerstone of building predictors, we collected anew and collated the LLPS proteins from the latest versions of three databases. By comparing the performance of the position-specific score matrix (PSSM) and word embedding, PredLLPS_PSSM combined PSSM-based information and two deep learning frameworks. Independent tests using three existing independent test datasets and two newly constructed independent test datasets demonstrated the superiority of PredLLPS_PSSM compared with state-of-the-art methods. Furthermore, we tested PredLLPS_PSSM on nine experimentally identified LLPS proteins from three insects that were not included in any of the databases. In addition, the powerful Shapley Additive exPlanation algorithm and heatmap were applied to find the most critical amino acids relevant to LLPS.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
苗条的立果完成签到 ,获得积分10
4秒前
HEHNJJ发布了新的文献求助10
7秒前
今后应助科研民工采纳,获得10
9秒前
11秒前
不配.给默默问芙的求助进行了留言
14秒前
cloverdown发布了新的文献求助10
17秒前
无花果应助撒大苏打采纳,获得10
18秒前
23秒前
hh完成签到,获得积分10
23秒前
23秒前
23秒前
彭凯发布了新的文献求助10
26秒前
Hello应助cindyyunjie采纳,获得10
29秒前
博学而多问完成签到 ,获得积分10
29秒前
30秒前
撒大苏打发布了新的文献求助10
30秒前
30秒前
思源应助彭凯采纳,获得10
31秒前
刘成财发布了新的文献求助10
34秒前
wen完成签到,获得积分10
34秒前
耍酷的斩发布了新的文献求助10
34秒前
37秒前
moyu123完成签到,获得积分10
40秒前
英姑应助泥妮采纳,获得10
42秒前
moyu123发布了新的文献求助10
46秒前
46秒前
47秒前
48秒前
叮叮完成签到 ,获得积分10
49秒前
51秒前
Owen应助清爽的向南采纳,获得10
52秒前
cindyyunjie发布了新的文献求助10
52秒前
52秒前
源味怪豆发布了新的文献求助10
54秒前
Owen应助椿·采纳,获得20
57秒前
1分钟前
1分钟前
1分钟前
1分钟前
高分求助中
Spray / Wall-interaction Modelling by Dimensionless Data Analysis 2000
Evolution 3rd edition 1500
保险藏宝图 1000
Lire en communiste 1000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 700
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
Mathematics and Finite Element Discretizations of Incompressible Navier—Stokes Flows 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3186379
求助须知:如何正确求助?哪些是违规求助? 2836732
关于积分的说明 8010637
捐赠科研通 2499055
什么是DOI,文献DOI怎么找? 1334061
科研通“疑难数据库(出版商)”最低求助积分说明 637023
邀请新用户注册赠送积分活动 604964