PredLLPS_PSSM: a novel predictor for liquid–liquid protein separation identification based on evolutionary information and a deep neural network

计算机科学 鉴定(生物学) 深度学习 人工智能 计算生物学 人工神经网络 模式识别(心理学) 生物 植物
作者
Shengming Zhou,Y. Z. Zhou,Tian Liu,Juanjuan Zheng,Cangzhi Jia
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:24 (5)
标识
DOI:10.1093/bib/bbad299
摘要

The formation of biomolecular condensates by liquid-liquid phase separation (LLPS) has become a universal mechanism for spatiotemporal coordination of biological activities in cells and has been widely observed to directly regulate the key cellular processes involved in cancer cell pathology. However, the complexity of protein sequences and the diversity of conformations are inherently disordered, which poses great challenges for LLPS protein calculations and experimental research. Herein, we proposed a novel predictor named PredLLPS_PSSM for LLPS protein identification based only on sequence evolution information. Because finding real and reliable samples is the cornerstone of building predictors, we collected anew and collated the LLPS proteins from the latest versions of three databases. By comparing the performance of the position-specific score matrix (PSSM) and word embedding, PredLLPS_PSSM combined PSSM-based information and two deep learning frameworks. Independent tests using three existing independent test datasets and two newly constructed independent test datasets demonstrated the superiority of PredLLPS_PSSM compared with state-of-the-art methods. Furthermore, we tested PredLLPS_PSSM on nine experimentally identified LLPS proteins from three insects that were not included in any of the databases. In addition, the powerful Shapley Additive exPlanation algorithm and heatmap were applied to find the most critical amino acids relevant to LLPS.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
思路三发布了新的文献求助10
刚刚
ACP_PR完成签到 ,获得积分10
刚刚
充电宝应助小小罗采纳,获得10
刚刚
黄花菜完成签到 ,获得积分10
1秒前
2秒前
3秒前
3秒前
迅速纸鹤完成签到,获得积分20
5秒前
llhh2024发布了新的文献求助10
6秒前
咖喱花菜发布了新的文献求助10
6秒前
origin发布了新的文献求助10
7秒前
Maisie完成签到,获得积分10
8秒前
8秒前
上官若男应助思路三采纳,获得10
10秒前
尼亚吉拉发布了新的文献求助10
10秒前
13秒前
我是老大应助origin采纳,获得30
15秒前
19秒前
别再熬夜完成签到,获得积分10
20秒前
kklkimo完成签到,获得积分10
20秒前
21秒前
姜姜完成签到 ,获得积分10
21秒前
今后应助Thomas周采纳,获得10
22秒前
泉水指挥发布了新的文献求助10
25秒前
Aikeyan应助忧伤的一刀采纳,获得10
25秒前
诗梦完成签到,获得积分10
27秒前
Ava应助CYC采纳,获得10
28秒前
29秒前
5433完成签到,获得积分10
30秒前
31秒前
大喜完成签到,获得积分10
31秒前
33秒前
33秒前
科研钓鱼佬完成签到,获得积分10
33秒前
大喜发布了新的文献求助10
34秒前
汉堡包应助泉水指挥采纳,获得10
36秒前
舟舟完成签到,获得积分10
36秒前
汉堡包应助风筝与风采纳,获得10
36秒前
不配.应助mbf采纳,获得10
37秒前
tianguoheng完成签到,获得积分20
37秒前
高分求助中
Spray / Wall-interaction Modelling by Dimensionless Data Analysis 2000
ALA生合成不全マウスでの糖代謝異常の分子機構解析 520
安全防范技术与工程 500
Mathematics and Finite Element Discretizations of Incompressible Navier—Stokes Flows 500
2-Acetyl-1-pyrroline: an important aroma component of cooked rice 500
A real-time energy management strategy based on fuzzy control and ECMS for PHEVs 400
2024 Medicinal Chemistry Reviews 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3190778
求助须知:如何正确求助?哪些是违规求助? 2840001
关于积分的说明 8026649
捐赠科研通 2503132
什么是DOI,文献DOI怎么找? 1336760
科研通“疑难数据库(出版商)”最低求助积分说明 637950
邀请新用户注册赠送积分活动 606279