PredLLPS_PSSM: a novel predictor for liquid–liquid protein separation identification based on evolutionary information and a deep neural network

计算机科学 鉴定(生物学) 深度学习 人工智能 计算生物学 人工神经网络 模式识别(心理学) 生物 植物
作者
Shengming Zhou,Y. Z. Zhou,Tian Liu,Juanjuan Zheng,Cangzhi Jia
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:24 (5)
标识
DOI:10.1093/bib/bbad299
摘要

The formation of biomolecular condensates by liquid-liquid phase separation (LLPS) has become a universal mechanism for spatiotemporal coordination of biological activities in cells and has been widely observed to directly regulate the key cellular processes involved in cancer cell pathology. However, the complexity of protein sequences and the diversity of conformations are inherently disordered, which poses great challenges for LLPS protein calculations and experimental research. Herein, we proposed a novel predictor named PredLLPS_PSSM for LLPS protein identification based only on sequence evolution information. Because finding real and reliable samples is the cornerstone of building predictors, we collected anew and collated the LLPS proteins from the latest versions of three databases. By comparing the performance of the position-specific score matrix (PSSM) and word embedding, PredLLPS_PSSM combined PSSM-based information and two deep learning frameworks. Independent tests using three existing independent test datasets and two newly constructed independent test datasets demonstrated the superiority of PredLLPS_PSSM compared with state-of-the-art methods. Furthermore, we tested PredLLPS_PSSM on nine experimentally identified LLPS proteins from three insects that were not included in any of the databases. In addition, the powerful Shapley Additive exPlanation algorithm and heatmap were applied to find the most critical amino acids relevant to LLPS.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Lyl完成签到,获得积分10
刚刚
xwl完成签到,获得积分10
3秒前
lsh完成签到,获得积分10
4秒前
CL完成签到,获得积分10
4秒前
科研小白发布了新的文献求助10
4秒前
玩命的静丹完成签到,获得积分10
4秒前
小秃兄完成签到,获得积分10
4秒前
5秒前
研友_ngKqrn完成签到,获得积分10
5秒前
拼搏的青雪完成签到,获得积分10
5秒前
任性柜子完成签到 ,获得积分10
6秒前
Akim应助我就是歌手采纳,获得10
7秒前
Hou完成签到,获得积分10
8秒前
Emilia完成签到,获得积分10
8秒前
8秒前
Wy完成签到,获得积分20
10秒前
10秒前
10秒前
科研通AI2S应助摸之恶莫采纳,获得10
10秒前
阿V完成签到,获得积分10
11秒前
叶叶叶完成签到,获得积分10
11秒前
哎嘤斯坦完成签到,获得积分10
11秒前
肥女姐姐发布了新的文献求助30
11秒前
MAKEYF完成签到 ,获得积分10
12秒前
歪歪扣叉完成签到 ,获得积分10
12秒前
专注的尔安完成签到,获得积分10
12秒前
雨天完成签到,获得积分10
13秒前
14秒前
lh发布了新的文献求助10
15秒前
科研通AI2S应助淡定的安白采纳,获得10
15秒前
uupp完成签到,获得积分10
16秒前
成就的白竹完成签到,获得积分10
16秒前
板栗完成签到,获得积分10
16秒前
huhu完成签到 ,获得积分10
17秒前
17秒前
ww发布了新的文献求助10
17秒前
虚幻的冰露完成签到 ,获得积分10
17秒前
L3完成签到,获得积分10
17秒前
TOMORI酱完成签到,获得积分10
18秒前
冷静乌完成签到,获得积分10
18秒前
高分求助中
Spray / Wall-interaction Modelling by Dimensionless Data Analysis 2000
ALA生合成不全マウスでの糖代謝異常の分子機構解析 520
安全防范技术与工程 500
Mathematics and Finite Element Discretizations of Incompressible Navier—Stokes Flows 500
2024 Medicinal Chemistry Reviews 400
Актуализированная стратиграфическая схема триасовых отложений Прикаспийского региона. Объяснительная записка 360
Dictionary of socialism 350
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3192734
求助须知:如何正确求助?哪些是违规求助? 2841829
关于积分的说明 8035270
捐赠科研通 2505544
什么是DOI,文献DOI怎么找? 1338664
科研通“疑难数据库(出版商)”最低求助积分说明 638404
邀请新用户注册赠送积分活动 606972