PredLLPS_PSSM: a novel predictor for liquid–liquid protein separation identification based on evolutionary information and a deep neural network

计算机科学 鉴定(生物学) 深度学习 人工智能 计算生物学 人工神经网络 模式识别(心理学) 生物 植物
作者
Shengming Zhou,Y. Z. Zhou,Tian Liu,Juanjuan Zheng,Cangzhi Jia
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:24 (5)
标识
DOI:10.1093/bib/bbad299
摘要

The formation of biomolecular condensates by liquid-liquid phase separation (LLPS) has become a universal mechanism for spatiotemporal coordination of biological activities in cells and has been widely observed to directly regulate the key cellular processes involved in cancer cell pathology. However, the complexity of protein sequences and the diversity of conformations are inherently disordered, which poses great challenges for LLPS protein calculations and experimental research. Herein, we proposed a novel predictor named PredLLPS_PSSM for LLPS protein identification based only on sequence evolution information. Because finding real and reliable samples is the cornerstone of building predictors, we collected anew and collated the LLPS proteins from the latest versions of three databases. By comparing the performance of the position-specific score matrix (PSSM) and word embedding, PredLLPS_PSSM combined PSSM-based information and two deep learning frameworks. Independent tests using three existing independent test datasets and two newly constructed independent test datasets demonstrated the superiority of PredLLPS_PSSM compared with state-of-the-art methods. Furthermore, we tested PredLLPS_PSSM on nine experimentally identified LLPS proteins from three insects that were not included in any of the databases. In addition, the powerful Shapley Additive exPlanation algorithm and heatmap were applied to find the most critical amino acids relevant to LLPS.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
劲秉应助我的副本采纳,获得30
1秒前
maomao完成签到,获得积分10
2秒前
星辰大海应助lilac采纳,获得10
2秒前
2秒前
忐忑的雪糕完成签到 ,获得积分10
2秒前
xiayizhan发布了新的文献求助10
3秒前
英俊的铭应助海绵徐采纳,获得10
3秒前
4秒前
顾子墨完成签到,获得积分10
4秒前
谭平发布了新的文献求助10
5秒前
嘻嘻完成签到,获得积分10
6秒前
淳于白凝发布了新的文献求助10
6秒前
CodeCraft应助maomao采纳,获得10
6秒前
gxjf完成签到,获得积分10
6秒前
7秒前
8秒前
8秒前
淡然乌龟完成签到,获得积分10
9秒前
站在巨人的肩膀上完成签到,获得积分10
10秒前
完美冷安完成签到,获得积分10
10秒前
10秒前
spirit发布了新的文献求助10
10秒前
11秒前
善学以致用应助尤珩采纳,获得10
13秒前
谭平完成签到,获得积分10
13秒前
13秒前
ocean发布了新的文献求助10
13秒前
13秒前
鸳鸯士完成签到,获得积分10
14秒前
小瓶子发布了新的文献求助10
14秒前
时冬冬应助Tina采纳,获得20
14秒前
坦率尔琴发布了新的文献求助10
14秒前
可可关注了科研通微信公众号
15秒前
彭于彦祖应助我的副本采纳,获得30
15秒前
大威天龙完成签到,获得积分10
16秒前
ew.完成签到,获得积分10
16秒前
duckspy完成签到 ,获得积分10
17秒前
17秒前
海绵徐发布了新的文献求助10
17秒前
高分求助中
Spray / Wall-interaction Modelling by Dimensionless Data Analysis 2000
ALA生合成不全マウスでの糖代謝異常の分子機構解析 520
Mathematics and Finite Element Discretizations of Incompressible Navier—Stokes Flows 500
2024 Medicinal Chemistry Reviews 400
Dictionary of socialism 350
Geochemistry, 2nd Edition 地球化学经典教科书第二版 300
Idoxuridine 260
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3194732
求助须知:如何正确求助?哪些是违规求助? 2843528
关于积分的说明 8045734
捐赠科研通 2508044
什么是DOI,文献DOI怎么找? 1340452
科研通“疑难数据库(出版商)”最低求助积分说明 638946
邀请新用户注册赠送积分活动 607864