已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

PredLLPS_PSSM: a novel predictor for liquid–liquid protein separation identification based on evolutionary information and a deep neural network

计算机科学 鉴定(生物学) 深度学习 人工智能 计算生物学 人工神经网络 模式识别(心理学) 生物 植物
作者
Shengming Zhou,Y. Z. Zhou,Tian Liu,Juanjuan Zheng,Cangzhi Jia
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:24 (5)
标识
DOI:10.1093/bib/bbad299
摘要

The formation of biomolecular condensates by liquid-liquid phase separation (LLPS) has become a universal mechanism for spatiotemporal coordination of biological activities in cells and has been widely observed to directly regulate the key cellular processes involved in cancer cell pathology. However, the complexity of protein sequences and the diversity of conformations are inherently disordered, which poses great challenges for LLPS protein calculations and experimental research. Herein, we proposed a novel predictor named PredLLPS_PSSM for LLPS protein identification based only on sequence evolution information. Because finding real and reliable samples is the cornerstone of building predictors, we collected anew and collated the LLPS proteins from the latest versions of three databases. By comparing the performance of the position-specific score matrix (PSSM) and word embedding, PredLLPS_PSSM combined PSSM-based information and two deep learning frameworks. Independent tests using three existing independent test datasets and two newly constructed independent test datasets demonstrated the superiority of PredLLPS_PSSM compared with state-of-the-art methods. Furthermore, we tested PredLLPS_PSSM on nine experimentally identified LLPS proteins from three insects that were not included in any of the databases. In addition, the powerful Shapley Additive exPlanation algorithm and heatmap were applied to find the most critical amino acids relevant to LLPS.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
研友_VZG7GZ应助闪闪的筮采纳,获得10
1秒前
cc关注了科研通微信公众号
1秒前
超帅的棒棒糖完成签到 ,获得积分10
2秒前
cris285发布了新的文献求助10
2秒前
3秒前
tdtk发布了新的文献求助10
3秒前
3秒前
5秒前
5秒前
哈哈哈哈完成签到 ,获得积分10
7秒前
科研通AI2S应助塔矢亮采纳,获得10
7秒前
大模型应助fun采纳,获得10
7秒前
peansant发布了新的文献求助10
7秒前
大气的寻桃完成签到,获得积分10
8秒前
HEIKU应助小羊哥采纳,获得10
9秒前
JeromineJade发布了新的文献求助30
10秒前
11秒前
多多西瓜头丶完成签到,获得积分10
12秒前
夏天完成签到 ,获得积分10
12秒前
所所应助花花采纳,获得10
12秒前
汉堡包应助梦比优斯采纳,获得30
14秒前
14秒前
15秒前
人间烟火发布了新的文献求助10
17秒前
19秒前
asw完成签到,获得积分20
19秒前
22秒前
24秒前
tdtk发布了新的文献求助10
24秒前
小羽完成签到,获得积分10
24秒前
25秒前
26秒前
27秒前
Lucas应助疯狂的迪子采纳,获得10
28秒前
大傻春发布了新的文献求助10
28秒前
狂野萤应助人间烟火采纳,获得20
28秒前
英俊的铭应助叫个啥嘞采纳,获得10
28秒前
asw发布了新的文献求助10
29秒前
打打应助科研通管家采纳,获得10
30秒前
Owen应助科研通管家采纳,获得10
30秒前
高分求助中
Spray / Wall-interaction Modelling by Dimensionless Data Analysis 2000
Aspects of Babylonian celestial divination: the lunar eclipse tablets of Enūma Anu Enlil 500
Mathematics and Finite Element Discretizations of Incompressible Navier—Stokes Flows 500
India's foreign trade policy and its performance in the world economy 450
Structural Inorganic Chemistry 400
Dictionary of socialism 350
Mixed-anion Compounds 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3196333
求助须知:如何正确求助?哪些是违规求助? 2845118
关于积分的说明 8052917
捐赠科研通 2509682
什么是DOI,文献DOI怎么找? 1341932
科研通“疑难数据库(出版商)”最低求助积分说明 639304
邀请新用户注册赠送积分活动 608547