PredLLPS_PSSM: a novel predictor for liquid–liquid protein separation identification based on evolutionary information and a deep neural network

计算机科学 鉴定(生物学) 深度学习 人工智能 计算生物学 人工神经网络 模式识别(心理学) 生物 植物
作者
Shengming Zhou,Y. Z. Zhou,Tian Liu,Juanjuan Zheng,Cangzhi Jia
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:24 (5)
标识
DOI:10.1093/bib/bbad299
摘要

The formation of biomolecular condensates by liquid-liquid phase separation (LLPS) has become a universal mechanism for spatiotemporal coordination of biological activities in cells and has been widely observed to directly regulate the key cellular processes involved in cancer cell pathology. However, the complexity of protein sequences and the diversity of conformations are inherently disordered, which poses great challenges for LLPS protein calculations and experimental research. Herein, we proposed a novel predictor named PredLLPS_PSSM for LLPS protein identification based only on sequence evolution information. Because finding real and reliable samples is the cornerstone of building predictors, we collected anew and collated the LLPS proteins from the latest versions of three databases. By comparing the performance of the position-specific score matrix (PSSM) and word embedding, PredLLPS_PSSM combined PSSM-based information and two deep learning frameworks. Independent tests using three existing independent test datasets and two newly constructed independent test datasets demonstrated the superiority of PredLLPS_PSSM compared with state-of-the-art methods. Furthermore, we tested PredLLPS_PSSM on nine experimentally identified LLPS proteins from three insects that were not included in any of the databases. In addition, the powerful Shapley Additive exPlanation algorithm and heatmap were applied to find the most critical amino acids relevant to LLPS.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
柏柳发布了新的文献求助10
1秒前
1秒前
2秒前
横空完成签到,获得积分10
2秒前
wwqc发布了新的文献求助50
3秒前
宝宝发布了新的文献求助10
3秒前
飞行致幻剂完成签到,获得积分10
3秒前
WWXWWX应助洁净白容采纳,获得10
4秒前
汉堡包应助grey00777采纳,获得10
4秒前
枯木逢春发布了新的文献求助30
4秒前
5秒前
体贴远山完成签到,获得积分20
5秒前
aka拉粑粑大王完成签到,获得积分10
6秒前
独特的凝云完成签到 ,获得积分10
6秒前
罗_应助Sandy采纳,获得10
7秒前
7秒前
嗯哼应助cindy采纳,获得20
7秒前
嗯哼应助cindy采纳,获得20
7秒前
7秒前
7秒前
lb发布了新的文献求助10
7秒前
万能图书馆应助dyfsj采纳,获得10
9秒前
9秒前
nana完成签到,获得积分10
9秒前
10秒前
Akim应助元谷雪采纳,获得10
10秒前
英俊的铭应助流星采纳,获得10
10秒前
zw1215425发布了新的文献求助10
11秒前
慕青应助ananan采纳,获得10
12秒前
12秒前
我是老大应助qq采纳,获得10
12秒前
端庄的孤风完成签到 ,获得积分10
12秒前
123发布了新的文献求助10
12秒前
好运完成签到 ,获得积分10
12秒前
咸鱼发布了新的文献求助10
13秒前
Kindy发布了新的文献求助10
14秒前
深情安青应助宝宝采纳,获得20
14秒前
15秒前
酷波er应助元橘采纳,获得10
16秒前
快乐顽童完成签到,获得积分10
16秒前
高分求助中
Evolution 3rd edition 1500
保险藏宝图 1000
Lire en communiste 1000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 700
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
2-Acetyl-1-pyrroline: an important aroma component of cooked rice 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3184082
求助须知:如何正确求助?哪些是违规求助? 2834357
关于积分的说明 7999302
捐赠科研通 2496567
什么是DOI,文献DOI怎么找? 1332442
科研通“疑难数据库(出版商)”最低求助积分说明 636579
邀请新用户注册赠送积分活动 603868