PredLLPS_PSSM: a novel predictor for liquid–liquid protein separation identification based on evolutionary information and a deep neural network

计算机科学 鉴定(生物学) 深度学习 人工智能 计算生物学 人工神经网络 模式识别(心理学) 生物 植物
作者
Shengming Zhou,Y. Z. Zhou,Tian Liu,Juanjuan Zheng,Cangzhi Jia
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:24 (5)
标识
DOI:10.1093/bib/bbad299
摘要

The formation of biomolecular condensates by liquid-liquid phase separation (LLPS) has become a universal mechanism for spatiotemporal coordination of biological activities in cells and has been widely observed to directly regulate the key cellular processes involved in cancer cell pathology. However, the complexity of protein sequences and the diversity of conformations are inherently disordered, which poses great challenges for LLPS protein calculations and experimental research. Herein, we proposed a novel predictor named PredLLPS_PSSM for LLPS protein identification based only on sequence evolution information. Because finding real and reliable samples is the cornerstone of building predictors, we collected anew and collated the LLPS proteins from the latest versions of three databases. By comparing the performance of the position-specific score matrix (PSSM) and word embedding, PredLLPS_PSSM combined PSSM-based information and two deep learning frameworks. Independent tests using three existing independent test datasets and two newly constructed independent test datasets demonstrated the superiority of PredLLPS_PSSM compared with state-of-the-art methods. Furthermore, we tested PredLLPS_PSSM on nine experimentally identified LLPS proteins from three insects that were not included in any of the databases. In addition, the powerful Shapley Additive exPlanation algorithm and heatmap were applied to find the most critical amino acids relevant to LLPS.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
打打应助45采纳,获得10
刚刚
刚刚
刚刚
1秒前
科研通AI6应助阿龙采纳,获得10
2秒前
2秒前
迷路的以蓝完成签到,获得积分20
2秒前
傲娇诗完成签到,获得积分10
2秒前
心灵美盼烟完成签到,获得积分10
2秒前
晚来风与雪完成签到 ,获得积分10
3秒前
科研通AI6应助cuizhiyu采纳,获得30
3秒前
xxx发布了新的文献求助10
3秒前
xzh发布了新的文献求助10
3秒前
Li应助倒霉蛋采纳,获得30
4秒前
江子完成签到 ,获得积分10
4秒前
4秒前
4秒前
繁星背后发布了新的文献求助10
4秒前
Ava应助浪费采纳,获得10
5秒前
5秒前
努力发芽的小黄豆完成签到 ,获得积分10
5秒前
罗兴鲜发布了新的文献求助10
5秒前
ZMY完成签到 ,获得积分20
6秒前
6秒前
YYY发布了新的文献求助10
6秒前
薛而不思则罔完成签到 ,获得积分10
6秒前
李健应助平常沅采纳,获得10
6秒前
7秒前
浮浮世世发布了新的文献求助10
7秒前
肉被卡完成签到,获得积分10
8秒前
8秒前
Paranoid发布了新的文献求助10
8秒前
Jasper应助平淡糖豆采纳,获得10
8秒前
凉瞳发布了新的文献求助10
9秒前
xxx完成签到,获得积分10
9秒前
厉害完成签到,获得积分10
9秒前
沉静秋尽发布了新的文献求助10
9秒前
10秒前
洪汉完成签到,获得积分10
10秒前
123123完成签到,获得积分10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Vertebrate Palaeontology, 5th Edition 340
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5260162
求助须知:如何正确求助?哪些是违规求助? 4421632
关于积分的说明 13763676
捐赠科研通 4295814
什么是DOI,文献DOI怎么找? 2357032
邀请新用户注册赠送积分活动 1353405
关于科研通互助平台的介绍 1314609