PredLLPS_PSSM: a novel predictor for liquid–liquid protein separation identification based on evolutionary information and a deep neural network

计算机科学 鉴定(生物学) 深度学习 人工智能 计算生物学 人工神经网络 模式识别(心理学) 生物 植物
作者
Shengming Zhou,Y. Z. Zhou,Tian Liu,Juanjuan Zheng,Cangzhi Jia
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:24 (5)
标识
DOI:10.1093/bib/bbad299
摘要

The formation of biomolecular condensates by liquid-liquid phase separation (LLPS) has become a universal mechanism for spatiotemporal coordination of biological activities in cells and has been widely observed to directly regulate the key cellular processes involved in cancer cell pathology. However, the complexity of protein sequences and the diversity of conformations are inherently disordered, which poses great challenges for LLPS protein calculations and experimental research. Herein, we proposed a novel predictor named PredLLPS_PSSM for LLPS protein identification based only on sequence evolution information. Because finding real and reliable samples is the cornerstone of building predictors, we collected anew and collated the LLPS proteins from the latest versions of three databases. By comparing the performance of the position-specific score matrix (PSSM) and word embedding, PredLLPS_PSSM combined PSSM-based information and two deep learning frameworks. Independent tests using three existing independent test datasets and two newly constructed independent test datasets demonstrated the superiority of PredLLPS_PSSM compared with state-of-the-art methods. Furthermore, we tested PredLLPS_PSSM on nine experimentally identified LLPS proteins from three insects that were not included in any of the databases. In addition, the powerful Shapley Additive exPlanation algorithm and heatmap were applied to find the most critical amino acids relevant to LLPS.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Ava应助个性采纳,获得10
刚刚
刚刚
1秒前
1秒前
3秒前
小蘑菇应助叽叽哇哇采纳,获得10
4秒前
5秒前
水豚发布了新的文献求助10
5秒前
白华苍松发布了新的文献求助20
6秒前
落后的冬瓜完成签到 ,获得积分10
7秒前
茜茜爱钱钱完成签到 ,获得积分10
8秒前
黑色毛衣发布了新的文献求助10
8秒前
9秒前
端庄的煎蛋完成签到,获得积分10
10秒前
HP发布了新的文献求助60
11秒前
11秒前
水豚完成签到,获得积分10
12秒前
落后的冬瓜关注了科研通微信公众号
12秒前
个性给个性的求助进行了留言
13秒前
小二郎应助Gjj采纳,获得10
17秒前
17秒前
是阿兴啊发布了新的文献求助20
18秒前
18秒前
搜集达人应助狂野大雄鹰采纳,获得10
18秒前
18秒前
pcy完成签到,获得积分10
19秒前
Aikesi完成签到,获得积分10
20秒前
20秒前
Accepted应助小陈要当院士采纳,获得10
21秒前
533完成签到,获得积分20
21秒前
翟翟发布了新的文献求助10
22秒前
JamesPei应助杨春天采纳,获得10
23秒前
CipherSage应助tiandage采纳,获得10
23秒前
云风发布了新的文献求助10
24秒前
123发布了新的文献求助30
24秒前
希望天下0贩的0应助树池采纳,获得10
25秒前
北beibe完成签到,获得积分20
25秒前
小西米完成签到 ,获得积分10
26秒前
Janet_Jing完成签到 ,获得积分10
26秒前
高分求助中
Spray / Wall-interaction Modelling by Dimensionless Data Analysis 2000
ALA生合成不全マウスでの糖代謝異常の分子機構解析 520
Mathematics and Finite Element Discretizations of Incompressible Navier—Stokes Flows 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
2-Acetyl-1-pyrroline: an important aroma component of cooked rice 500
A real-time energy management strategy based on fuzzy control and ECMS for PHEVs 400
Handbook on People's China (1957) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3189221
求助须知:如何正确求助?哪些是违规求助? 2838662
关于积分的说明 8020607
捐赠科研通 2501498
什么是DOI,文献DOI怎么找? 1335586
科研通“疑难数据库(出版商)”最低求助积分说明 637661
邀请新用户注册赠送积分活动 605706