PredLLPS_PSSM: a novel predictor for liquid–liquid protein separation identification based on evolutionary information and a deep neural network

计算机科学 鉴定(生物学) 深度学习 人工智能 计算生物学 人工神经网络 模式识别(心理学) 生物 植物
作者
Shengming Zhou,Y. Z. Zhou,Tian Liu,Juanjuan Zheng,Cangzhi Jia
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:24 (5)
标识
DOI:10.1093/bib/bbad299
摘要

The formation of biomolecular condensates by liquid-liquid phase separation (LLPS) has become a universal mechanism for spatiotemporal coordination of biological activities in cells and has been widely observed to directly regulate the key cellular processes involved in cancer cell pathology. However, the complexity of protein sequences and the diversity of conformations are inherently disordered, which poses great challenges for LLPS protein calculations and experimental research. Herein, we proposed a novel predictor named PredLLPS_PSSM for LLPS protein identification based only on sequence evolution information. Because finding real and reliable samples is the cornerstone of building predictors, we collected anew and collated the LLPS proteins from the latest versions of three databases. By comparing the performance of the position-specific score matrix (PSSM) and word embedding, PredLLPS_PSSM combined PSSM-based information and two deep learning frameworks. Independent tests using three existing independent test datasets and two newly constructed independent test datasets demonstrated the superiority of PredLLPS_PSSM compared with state-of-the-art methods. Furthermore, we tested PredLLPS_PSSM on nine experimentally identified LLPS proteins from three insects that were not included in any of the databases. In addition, the powerful Shapley Additive exPlanation algorithm and heatmap were applied to find the most critical amino acids relevant to LLPS.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
上官若男应助yuan采纳,获得10
3秒前
景穆发布了新的文献求助10
3秒前
大秋哥哈拉少完成签到,获得积分10
4秒前
岳莹晓完成签到 ,获得积分10
6秒前
hiyuntian发布了新的文献求助10
7秒前
缓慢千易完成签到,获得积分10
8秒前
英姑应助幽默的小之采纳,获得10
9秒前
脑洞疼应助vain采纳,获得10
10秒前
10秒前
zyy完成签到 ,获得积分10
12秒前
英姑应助kevin1018采纳,获得10
12秒前
负责的凝莲完成签到 ,获得积分10
13秒前
wuzhh完成签到,获得积分20
13秒前
含糊的清发布了新的文献求助10
13秒前
15秒前
16秒前
16秒前
正直凛完成签到,获得积分10
17秒前
17秒前
半颗橙子完成签到,获得积分10
17秒前
二月why发布了新的文献求助10
19秒前
wuzhh关注了科研通微信公众号
20秒前
21秒前
25秒前
含糊的清完成签到,获得积分20
26秒前
28秒前
28秒前
28秒前
声声慢发布了新的文献求助10
30秒前
ured发布了新的文献求助10
31秒前
32秒前
33秒前
谨慎的咖啡豆完成签到 ,获得积分10
33秒前
kevin1018发布了新的文献求助10
33秒前
小臭屁发布了新的文献求助10
35秒前
温暖的醉蓝完成签到,获得积分10
36秒前
buno应助科研通管家采纳,获得10
36秒前
打打应助科研通管家采纳,获得10
36秒前
慕青应助科研通管家采纳,获得10
36秒前
高分求助中
Spray / Wall-interaction Modelling by Dimensionless Data Analysis 2000
Evolution 3rd edition 1500
ALA生合成不全マウスでの糖代謝異常の分子機構解析 520
Mathematics and Finite Element Discretizations of Incompressible Navier—Stokes Flows 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
2-Acetyl-1-pyrroline: an important aroma component of cooked rice 500
Handbook on People's China (1957) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3188844
求助须知:如何正确求助?哪些是违规求助? 2838291
关于积分的说明 8019358
捐赠科研通 2501127
什么是DOI,文献DOI怎么找? 1335327
科研通“疑难数据库(出版商)”最低求助积分说明 637495
邀请新用户注册赠送积分活动 605618