PredLLPS_PSSM: a novel predictor for liquid–liquid protein separation identification based on evolutionary information and a deep neural network

计算机科学 鉴定(生物学) 深度学习 人工智能 计算生物学 人工神经网络 模式识别(心理学) 生物 植物
作者
Shengming Zhou,Y. Z. Zhou,Tian Liu,Juanjuan Zheng,Cangzhi Jia
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:24 (5)
标识
DOI:10.1093/bib/bbad299
摘要

The formation of biomolecular condensates by liquid-liquid phase separation (LLPS) has become a universal mechanism for spatiotemporal coordination of biological activities in cells and has been widely observed to directly regulate the key cellular processes involved in cancer cell pathology. However, the complexity of protein sequences and the diversity of conformations are inherently disordered, which poses great challenges for LLPS protein calculations and experimental research. Herein, we proposed a novel predictor named PredLLPS_PSSM for LLPS protein identification based only on sequence evolution information. Because finding real and reliable samples is the cornerstone of building predictors, we collected anew and collated the LLPS proteins from the latest versions of three databases. By comparing the performance of the position-specific score matrix (PSSM) and word embedding, PredLLPS_PSSM combined PSSM-based information and two deep learning frameworks. Independent tests using three existing independent test datasets and two newly constructed independent test datasets demonstrated the superiority of PredLLPS_PSSM compared with state-of-the-art methods. Furthermore, we tested PredLLPS_PSSM on nine experimentally identified LLPS proteins from three insects that were not included in any of the databases. In addition, the powerful Shapley Additive exPlanation algorithm and heatmap were applied to find the most critical amino acids relevant to LLPS.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Walter完成签到,获得积分10
2秒前
2秒前
竹筏过海应助liquss采纳,获得200
2秒前
mengxing1完成签到 ,获得积分10
6秒前
Malmever发布了新的文献求助10
6秒前
8秒前
8秒前
8秒前
芭喇完成签到,获得积分10
9秒前
袁来如此发布了新的文献求助20
12秒前
BSDL发布了新的文献求助10
12秒前
bobo发布了新的文献求助10
12秒前
卓疾发布了新的文献求助10
13秒前
郝妮子完成签到 ,获得积分10
14秒前
确幸完成签到,获得积分10
15秒前
Chemistry完成签到,获得积分10
17秒前
18秒前
充电宝应助卓疾采纳,获得10
21秒前
HF完成签到,获得积分10
22秒前
Adon完成签到,获得积分10
22秒前
23秒前
袁来如此完成签到,获得积分10
23秒前
23秒前
25秒前
25秒前
27秒前
买尔孜亚发布了新的文献求助10
27秒前
28秒前
灰青完成签到 ,获得积分10
29秒前
FragileJade发布了新的文献求助10
29秒前
Chemistry发布了新的文献求助10
30秒前
31秒前
hong发布了新的文献求助10
31秒前
32秒前
酷波er应助felix采纳,获得10
33秒前
慕青应助felix采纳,获得10
33秒前
ttracc完成签到,获得积分10
34秒前
科研通AI2S应助taster采纳,获得10
34秒前
谨慎忆安发布了新的文献求助10
34秒前
sunxs发布了新的文献求助10
37秒前
高分求助中
Evolution 3rd edition 1500
Lire en communiste 1000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 700
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
2-Acetyl-1-pyrroline: an important aroma component of cooked rice 500
Ribozymes and aptamers in the RNA world, and in synthetic biology 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3180875
求助须知:如何正确求助?哪些是违规求助? 2831074
关于积分的说明 7983059
捐赠科研通 2493038
什么是DOI,文献DOI怎么找? 1329956
科研通“疑难数据库(出版商)”最低求助积分说明 635859
版权声明 602954