PredLLPS_PSSM: a novel predictor for liquid–liquid protein separation identification based on evolutionary information and a deep neural network

计算机科学 鉴定(生物学) 深度学习 人工智能 计算生物学 人工神经网络 模式识别(心理学) 生物 植物
作者
Shengming Zhou,Y. Z. Zhou,Tian Liu,Juanjuan Zheng,Cangzhi Jia
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:24 (5)
标识
DOI:10.1093/bib/bbad299
摘要

The formation of biomolecular condensates by liquid-liquid phase separation (LLPS) has become a universal mechanism for spatiotemporal coordination of biological activities in cells and has been widely observed to directly regulate the key cellular processes involved in cancer cell pathology. However, the complexity of protein sequences and the diversity of conformations are inherently disordered, which poses great challenges for LLPS protein calculations and experimental research. Herein, we proposed a novel predictor named PredLLPS_PSSM for LLPS protein identification based only on sequence evolution information. Because finding real and reliable samples is the cornerstone of building predictors, we collected anew and collated the LLPS proteins from the latest versions of three databases. By comparing the performance of the position-specific score matrix (PSSM) and word embedding, PredLLPS_PSSM combined PSSM-based information and two deep learning frameworks. Independent tests using three existing independent test datasets and two newly constructed independent test datasets demonstrated the superiority of PredLLPS_PSSM compared with state-of-the-art methods. Furthermore, we tested PredLLPS_PSSM on nine experimentally identified LLPS proteins from three insects that were not included in any of the databases. In addition, the powerful Shapley Additive exPlanation algorithm and heatmap were applied to find the most critical amino acids relevant to LLPS.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
小xy发布了新的文献求助10
1秒前
汉堡包应助Summer采纳,获得30
2秒前
miss1995发布了新的文献求助10
2秒前
3秒前
mll发布了新的文献求助10
4秒前
4秒前
雪白音响发布了新的文献求助10
5秒前
赘婿应助AFsumo采纳,获得10
5秒前
Zephyr发布了新的文献求助10
5秒前
和路雪发布了新的文献求助10
6秒前
37发布了新的文献求助10
6秒前
6秒前
6秒前
6秒前
7秒前
7秒前
tfsn20发布了新的文献求助10
8秒前
大林发布了新的文献求助10
9秒前
10秒前
511发布了新的文献求助10
10秒前
Owen应助科研人员采纳,获得10
12秒前
CipherSage应助知性的耳机采纳,获得10
12秒前
领导范儿应助wang采纳,获得10
12秒前
七分糖发布了新的文献求助10
12秒前
13秒前
金刚经应助37采纳,获得10
14秒前
14秒前
小绵羊的酸奶盖完成签到,获得积分10
14秒前
mll完成签到,获得积分10
14秒前
收敛完成签到,获得积分10
16秒前
JamesPei应助吉吉采纳,获得10
16秒前
AFsumo发布了新的文献求助10
16秒前
17秒前
18秒前
一页发布了新的文献求助10
18秒前
19秒前
万能图书馆应助guyu采纳,获得30
19秒前
梦闲人完成签到,获得积分10
19秒前
高分求助中
Spray / Wall-interaction Modelling by Dimensionless Data Analysis 2000
Aspects of Babylonian celestial divination: the lunar eclipse tablets of Enūma Anu Enlil 500
Mathematics and Finite Element Discretizations of Incompressible Navier—Stokes Flows 500
India's foreign trade policy and its performance in the world economy 450
Structural Inorganic Chemistry 400
Dictionary of socialism 350
Mixed-anion Compounds 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3196121
求助须知:如何正确求助?哪些是违规求助? 2844892
关于积分的说明 8052117
捐赠科研通 2509514
什么是DOI,文献DOI怎么找? 1341768
科研通“疑难数据库(出版商)”最低求助积分说明 639262
邀请新用户注册赠送积分活动 608445