PredLLPS_PSSM: a novel predictor for liquid–liquid protein separation identification based on evolutionary information and a deep neural network

计算机科学 鉴定(生物学) 深度学习 人工智能 计算生物学 人工神经网络 模式识别(心理学) 生物 植物
作者
Shengming Zhou,Y. Z. Zhou,Tian Liu,Juanjuan Zheng,Cangzhi Jia
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:24 (5)
标识
DOI:10.1093/bib/bbad299
摘要

The formation of biomolecular condensates by liquid-liquid phase separation (LLPS) has become a universal mechanism for spatiotemporal coordination of biological activities in cells and has been widely observed to directly regulate the key cellular processes involved in cancer cell pathology. However, the complexity of protein sequences and the diversity of conformations are inherently disordered, which poses great challenges for LLPS protein calculations and experimental research. Herein, we proposed a novel predictor named PredLLPS_PSSM for LLPS protein identification based only on sequence evolution information. Because finding real and reliable samples is the cornerstone of building predictors, we collected anew and collated the LLPS proteins from the latest versions of three databases. By comparing the performance of the position-specific score matrix (PSSM) and word embedding, PredLLPS_PSSM combined PSSM-based information and two deep learning frameworks. Independent tests using three existing independent test datasets and two newly constructed independent test datasets demonstrated the superiority of PredLLPS_PSSM compared with state-of-the-art methods. Furthermore, we tested PredLLPS_PSSM on nine experimentally identified LLPS proteins from three insects that were not included in any of the databases. In addition, the powerful Shapley Additive exPlanation algorithm and heatmap were applied to find the most critical amino acids relevant to LLPS.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
皛宁完成签到,获得积分10
刚刚
ugk完成签到,获得积分10
1秒前
lzq完成签到 ,获得积分10
1秒前
Zongpeng发布了新的文献求助10
1秒前
1秒前
1秒前
蒋不惜完成签到,获得积分10
1秒前
LordRedScience完成签到,获得积分10
1秒前
于清绝完成签到 ,获得积分10
2秒前
子乔完成签到,获得积分10
2秒前
桐桐应助刘思琪采纳,获得10
2秒前
纯真忆秋完成签到,获得积分10
3秒前
wlz完成签到,获得积分10
3秒前
goose完成签到,获得积分10
3秒前
3秒前
量子星尘发布了新的文献求助50
4秒前
下载文章即可完成签到,获得积分10
4秒前
5秒前
无奈的信封完成签到,获得积分10
5秒前
ugk发布了新的文献求助10
5秒前
5秒前
喝呜昂完成签到 ,获得积分10
6秒前
昏睡的眼神完成签到 ,获得积分10
6秒前
李健的小迷弟应助菲菲呀采纳,获得10
6秒前
死糊关注了科研通微信公众号
6秒前
星星完成签到,获得积分10
6秒前
6秒前
李旭东发布了新的文献求助20
6秒前
老豆完成签到,获得积分10
6秒前
7秒前
今后应助ch采纳,获得10
7秒前
Mano完成签到,获得积分10
7秒前
黄123发布了新的文献求助10
7秒前
axuan完成签到,获得积分10
8秒前
饕餮肉丝发布了新的文献求助10
8秒前
无尘泪完成签到,获得积分10
8秒前
小丑鱼儿完成签到 ,获得积分10
8秒前
nine完成签到,获得积分10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
网络安全 SEMI 标准 ( SEMI E187, SEMI E188 and SEMI E191.) 1000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Why America Can't Retrench (And How it Might) 400
Two New β-Class Milbemycins from Streptomyces bingchenggensis: Fermentation, Isolation, Structure Elucidation and Biological Properties 300
Modern Britain, 1750 to the Present (第2版) 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4614581
求助须知:如何正确求助?哪些是违规求助? 4018748
关于积分的说明 12439646
捐赠科研通 3701503
什么是DOI,文献DOI怎么找? 2041241
邀请新用户注册赠送积分活动 1073983
科研通“疑难数据库(出版商)”最低求助积分说明 957639