亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

PredLLPS_PSSM: a novel predictor for liquid–liquid protein separation identification based on evolutionary information and a deep neural network

计算机科学 鉴定(生物学) 深度学习 人工智能 计算生物学 人工神经网络 模式识别(心理学) 生物 植物
作者
Shengming Zhou,Y. Z. Zhou,Tian Liu,Juanjuan Zheng,Cangzhi Jia
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:24 (5)
标识
DOI:10.1093/bib/bbad299
摘要

The formation of biomolecular condensates by liquid-liquid phase separation (LLPS) has become a universal mechanism for spatiotemporal coordination of biological activities in cells and has been widely observed to directly regulate the key cellular processes involved in cancer cell pathology. However, the complexity of protein sequences and the diversity of conformations are inherently disordered, which poses great challenges for LLPS protein calculations and experimental research. Herein, we proposed a novel predictor named PredLLPS_PSSM for LLPS protein identification based only on sequence evolution information. Because finding real and reliable samples is the cornerstone of building predictors, we collected anew and collated the LLPS proteins from the latest versions of three databases. By comparing the performance of the position-specific score matrix (PSSM) and word embedding, PredLLPS_PSSM combined PSSM-based information and two deep learning frameworks. Independent tests using three existing independent test datasets and two newly constructed independent test datasets demonstrated the superiority of PredLLPS_PSSM compared with state-of-the-art methods. Furthermore, we tested PredLLPS_PSSM on nine experimentally identified LLPS proteins from three insects that were not included in any of the databases. In addition, the powerful Shapley Additive exPlanation algorithm and heatmap were applied to find the most critical amino acids relevant to LLPS.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6应助呜呜吴采纳,获得10
2秒前
彭于晏应助Yan1961采纳,获得10
3秒前
欣喜宛亦完成签到 ,获得积分10
4秒前
FashionBoy应助dllneu采纳,获得10
5秒前
科研通AI2S应助宋佳珍采纳,获得10
8秒前
11秒前
14秒前
16秒前
Yan1961发布了新的文献求助10
17秒前
明亮的代灵完成签到 ,获得积分10
18秒前
雨下听风发布了新的文献求助10
21秒前
乐乐应助Yan1961采纳,获得10
23秒前
28秒前
34秒前
41秒前
43秒前
hjy发布了新的文献求助10
47秒前
Yan1961发布了新的文献求助10
50秒前
谢花花完成签到 ,获得积分10
53秒前
1分钟前
李爱国应助雨下听风采纳,获得10
1分钟前
传奇3应助谦让的思枫采纳,获得10
1分钟前
HUO完成签到 ,获得积分10
1分钟前
zs完成签到 ,获得积分10
1分钟前
1分钟前
追寻元菱应助科研通管家采纳,获得10
1分钟前
1分钟前
领导范儿应助科研通管家采纳,获得10
1分钟前
追寻元菱应助科研通管家采纳,获得10
1分钟前
Gideon完成签到,获得积分10
1分钟前
HZY发布了新的文献求助10
1分钟前
科研通AI6应助窝恁叠采纳,获得10
1分钟前
TIDUS完成签到,获得积分10
1分钟前
1分钟前
微笑发布了新的文献求助10
1分钟前
笨笨曲奇发布了新的文献求助10
1分钟前
TIDUS完成签到,获得积分10
1分钟前
领导范儿应助HZY采纳,获得10
1分钟前
1分钟前
1分钟前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Fermented Coffee Market 500
Theory of Dislocations (3rd ed.) 500
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5232369
求助须知:如何正确求助?哪些是违规求助? 4401711
关于积分的说明 13699246
捐赠科研通 4268071
什么是DOI,文献DOI怎么找? 2342269
邀请新用户注册赠送积分活动 1339354
关于科研通互助平台的介绍 1295951