PredLLPS_PSSM: a novel predictor for liquid–liquid protein separation identification based on evolutionary information and a deep neural network

计算机科学 鉴定(生物学) 深度学习 人工智能 计算生物学 人工神经网络 模式识别(心理学) 生物 植物
作者
Shengming Zhou,Y. Z. Zhou,Tian Liu,Juanjuan Zheng,Cangzhi Jia
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:24 (5)
标识
DOI:10.1093/bib/bbad299
摘要

The formation of biomolecular condensates by liquid-liquid phase separation (LLPS) has become a universal mechanism for spatiotemporal coordination of biological activities in cells and has been widely observed to directly regulate the key cellular processes involved in cancer cell pathology. However, the complexity of protein sequences and the diversity of conformations are inherently disordered, which poses great challenges for LLPS protein calculations and experimental research. Herein, we proposed a novel predictor named PredLLPS_PSSM for LLPS protein identification based only on sequence evolution information. Because finding real and reliable samples is the cornerstone of building predictors, we collected anew and collated the LLPS proteins from the latest versions of three databases. By comparing the performance of the position-specific score matrix (PSSM) and word embedding, PredLLPS_PSSM combined PSSM-based information and two deep learning frameworks. Independent tests using three existing independent test datasets and two newly constructed independent test datasets demonstrated the superiority of PredLLPS_PSSM compared with state-of-the-art methods. Furthermore, we tested PredLLPS_PSSM on nine experimentally identified LLPS proteins from three insects that were not included in any of the databases. In addition, the powerful Shapley Additive exPlanation algorithm and heatmap were applied to find the most critical amino acids relevant to LLPS.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
坚强的依秋完成签到,获得积分10
1秒前
哎呦呦仔完成签到,获得积分20
1秒前
飞奔的小田完成签到,获得积分10
2秒前
瓷儿发布了新的文献求助10
2秒前
爆米花应助皮皮卡采纳,获得10
3秒前
打打应助刘斌采纳,获得10
6秒前
缓慢的灵枫完成签到,获得积分10
6秒前
充电宝应助和谐夏彤采纳,获得10
6秒前
swall5w发布了新的文献求助10
8秒前
科研通AI2S应助淡然的铭采纳,获得10
8秒前
乐乐应助小尚要加油采纳,获得10
9秒前
慧妞完成签到 ,获得积分10
9秒前
zzzzzd发布了新的文献求助10
9秒前
高高网络完成签到,获得积分20
9秒前
臻灏完成签到,获得积分10
9秒前
brian0326完成签到,获得积分10
11秒前
11秒前
桐桐应助慈祥的夏岚采纳,获得10
12秒前
海北完成签到 ,获得积分10
12秒前
12秒前
13秒前
huohuo完成签到,获得积分10
13秒前
小二郎应助冷酷迎彤采纳,获得20
13秒前
Ava应助路十三采纳,获得10
14秒前
传奇3应助HC3采纳,获得10
16秒前
16秒前
17秒前
嗯哼应助H禾安采纳,获得10
18秒前
刘斌发布了新的文献求助10
19秒前
19秒前
19秒前
Juan完成签到,获得积分10
20秒前
Manchester完成签到,获得积分10
20秒前
21秒前
23秒前
23秒前
皮皮卡发布了新的文献求助10
23秒前
27秒前
娜娜发布了新的文献求助10
28秒前
爆米花应助刘斌采纳,获得10
28秒前
高分求助中
Spray / Wall-interaction Modelling by Dimensionless Data Analysis 2000
ALA生合成不全マウスでの糖代謝異常の分子機構解析 520
安全防范技术与工程 500
Mathematics and Finite Element Discretizations of Incompressible Navier—Stokes Flows 500
A real-time energy management strategy based on fuzzy control and ECMS for PHEVs 400
2024 Medicinal Chemistry Reviews 400
Актуализированная стратиграфическая схема триасовых отложений Прикаспийского региона. Объяснительная записка 360
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3191714
求助须知:如何正确求助?哪些是违规求助? 2841066
关于积分的说明 8031126
捐赠科研通 2504517
什么是DOI,文献DOI怎么找? 1337727
科研通“疑难数据库(出版商)”最低求助积分说明 638205
邀请新用户注册赠送积分活动 606697