PredLLPS_PSSM: a novel predictor for liquid–liquid protein separation identification based on evolutionary information and a deep neural network

计算机科学 鉴定(生物学) 深度学习 人工智能 计算生物学 人工神经网络 模式识别(心理学) 生物 植物
作者
Shengming Zhou,Y. Z. Zhou,Tian Liu,Juanjuan Zheng,Cangzhi Jia
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:24 (5)
标识
DOI:10.1093/bib/bbad299
摘要

The formation of biomolecular condensates by liquid-liquid phase separation (LLPS) has become a universal mechanism for spatiotemporal coordination of biological activities in cells and has been widely observed to directly regulate the key cellular processes involved in cancer cell pathology. However, the complexity of protein sequences and the diversity of conformations are inherently disordered, which poses great challenges for LLPS protein calculations and experimental research. Herein, we proposed a novel predictor named PredLLPS_PSSM for LLPS protein identification based only on sequence evolution information. Because finding real and reliable samples is the cornerstone of building predictors, we collected anew and collated the LLPS proteins from the latest versions of three databases. By comparing the performance of the position-specific score matrix (PSSM) and word embedding, PredLLPS_PSSM combined PSSM-based information and two deep learning frameworks. Independent tests using three existing independent test datasets and two newly constructed independent test datasets demonstrated the superiority of PredLLPS_PSSM compared with state-of-the-art methods. Furthermore, we tested PredLLPS_PSSM on nine experimentally identified LLPS proteins from three insects that were not included in any of the databases. In addition, the powerful Shapley Additive exPlanation algorithm and heatmap were applied to find the most critical amino acids relevant to LLPS.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
Bella发布了新的文献求助30
2秒前
2秒前
禾本科发布了新的文献求助80
4秒前
chichenglin发布了新的文献求助10
4秒前
GgXxx完成签到,获得积分10
4秒前
不配.应助霸气安筠采纳,获得10
5秒前
凡人完成签到,获得积分10
5秒前
江苏吴世勋完成签到,获得积分10
5秒前
苹果白凡完成签到,获得积分10
6秒前
6秒前
xike完成签到,获得积分10
7秒前
相龙发布了新的文献求助10
7秒前
Link完成签到 ,获得积分10
7秒前
8秒前
11秒前
破伤疯应助Nut采纳,获得10
12秒前
不配.应助勤恳的文涛采纳,获得20
12秒前
bkagyin应助幸运的羔羊采纳,获得10
12秒前
13秒前
Jiayee发布了新的文献求助20
13秒前
不配.应助浅浅采纳,获得10
14秒前
劲秉应助nnnnnn采纳,获得10
14秒前
dd发布了新的文献求助10
18秒前
科研通AI2S应助微微采纳,获得10
19秒前
tomato的痛苦你不知道完成签到,获得积分10
20秒前
haowu发布了新的文献求助10
21秒前
科研通AI2S应助科研通管家采纳,获得10
23秒前
赘婿应助科研通管家采纳,获得20
23秒前
小二郎应助科研通管家采纳,获得10
23秒前
爆米花应助科研通管家采纳,获得10
23秒前
酷波er应助科研通管家采纳,获得10
23秒前
科研通AI2S应助科研通管家采纳,获得30
23秒前
NexusExplorer应助科研通管家采纳,获得10
23秒前
所所应助科研通管家采纳,获得10
23秒前
klaydid应助科研通管家采纳,获得10
23秒前
科研通AI2S应助科研通管家采纳,获得10
23秒前
所所应助科研通管家采纳,获得10
24秒前
小胖子完成签到 ,获得积分10
24秒前
隐形曼青应助dd采纳,获得10
25秒前
高分求助中
Spray / Wall-interaction Modelling by Dimensionless Data Analysis 2000
Evolution 3rd edition 1500
ALA生合成不全マウスでの糖代謝異常の分子機構解析 520
Mathematics and Finite Element Discretizations of Incompressible Navier—Stokes Flows 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
2-Acetyl-1-pyrroline: an important aroma component of cooked rice 500
Handbook on People's China (1957) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3188971
求助须知:如何正确求助?哪些是违规求助? 2838392
关于积分的说明 8019745
捐赠科研通 2501242
什么是DOI,文献DOI怎么找? 1335469
科研通“疑难数据库(出版商)”最低求助积分说明 637526
邀请新用户注册赠送积分活动 605656