PredLLPS_PSSM: a novel predictor for liquid–liquid protein separation identification based on evolutionary information and a deep neural network

计算机科学 鉴定(生物学) 深度学习 人工智能 计算生物学 人工神经网络 模式识别(心理学) 生物 植物
作者
Shengming Zhou,Y. Z. Zhou,Tian Liu,Juanjuan Zheng,Cangzhi Jia
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:24 (5)
标识
DOI:10.1093/bib/bbad299
摘要

The formation of biomolecular condensates by liquid-liquid phase separation (LLPS) has become a universal mechanism for spatiotemporal coordination of biological activities in cells and has been widely observed to directly regulate the key cellular processes involved in cancer cell pathology. However, the complexity of protein sequences and the diversity of conformations are inherently disordered, which poses great challenges for LLPS protein calculations and experimental research. Herein, we proposed a novel predictor named PredLLPS_PSSM for LLPS protein identification based only on sequence evolution information. Because finding real and reliable samples is the cornerstone of building predictors, we collected anew and collated the LLPS proteins from the latest versions of three databases. By comparing the performance of the position-specific score matrix (PSSM) and word embedding, PredLLPS_PSSM combined PSSM-based information and two deep learning frameworks. Independent tests using three existing independent test datasets and two newly constructed independent test datasets demonstrated the superiority of PredLLPS_PSSM compared with state-of-the-art methods. Furthermore, we tested PredLLPS_PSSM on nine experimentally identified LLPS proteins from three insects that were not included in any of the databases. In addition, the powerful Shapley Additive exPlanation algorithm and heatmap were applied to find the most critical amino acids relevant to LLPS.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助JZ1640采纳,获得10
3秒前
灰色与青发布了新的文献求助10
3秒前
4秒前
4秒前
90小白完成签到,获得积分10
5秒前
琳琳完成签到,获得积分10
5秒前
直率的从彤完成签到,获得积分10
6秒前
7秒前
yml发布了新的文献求助10
7秒前
狗咚嘻发布了新的文献求助10
7秒前
香蕉觅云应助啵啵采纳,获得10
8秒前
10秒前
大聪明应助MU_CR7采纳,获得10
10秒前
小红完成签到 ,获得积分10
13秒前
13秒前
16秒前
okkk完成签到,获得积分10
17秒前
aoaoao完成签到,获得积分10
18秒前
羊洋洋发布了新的文献求助10
18秒前
19秒前
HB完成签到,获得积分10
19秒前
aoaoao发布了新的文献求助10
21秒前
23秒前
24秒前
析木发布了新的文献求助10
24秒前
XDF完成签到,获得积分20
26秒前
26秒前
26秒前
27秒前
西海岸的风完成签到 ,获得积分10
27秒前
zwj完成签到,获得积分20
28秒前
29秒前
泉水叮咚发布了新的文献求助10
29秒前
结实曼凡发布了新的文献求助10
31秒前
31秒前
完美世界应助lsx采纳,获得10
32秒前
roy完成签到,获得积分10
34秒前
35秒前
隐形的从阳完成签到 ,获得积分10
37秒前
自然刺猬完成签到,获得积分10
39秒前
高分求助中
Spray / Wall-interaction Modelling by Dimensionless Data Analysis 2000
Aspects of Babylonian celestial divination: the lunar eclipse tablets of Enūma Anu Enlil 500
Mathematics and Finite Element Discretizations of Incompressible Navier—Stokes Flows 500
2024 Medicinal Chemistry Reviews 400
Dictionary of socialism 350
Mixed-anion Compounds 300
Geochemistry, 2nd Edition 地球化学经典教科书第二版 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3195232
求助须知:如何正确求助?哪些是违规求助? 2844065
关于积分的说明 8048467
捐赠科研通 2508574
什么是DOI,文献DOI怎么找? 1340910
科研通“疑难数据库(出版商)”最低求助积分说明 639065
邀请新用户注册赠送积分活动 608025