PredLLPS_PSSM: a novel predictor for liquid–liquid protein separation identification based on evolutionary information and a deep neural network

计算机科学 鉴定(生物学) 深度学习 人工智能 计算生物学 人工神经网络 模式识别(心理学) 生物 植物
作者
Shengming Zhou,Y. Z. Zhou,Tian Liu,Juanjuan Zheng,Cangzhi Jia
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:24 (5)
标识
DOI:10.1093/bib/bbad299
摘要

The formation of biomolecular condensates by liquid-liquid phase separation (LLPS) has become a universal mechanism for spatiotemporal coordination of biological activities in cells and has been widely observed to directly regulate the key cellular processes involved in cancer cell pathology. However, the complexity of protein sequences and the diversity of conformations are inherently disordered, which poses great challenges for LLPS protein calculations and experimental research. Herein, we proposed a novel predictor named PredLLPS_PSSM for LLPS protein identification based only on sequence evolution information. Because finding real and reliable samples is the cornerstone of building predictors, we collected anew and collated the LLPS proteins from the latest versions of three databases. By comparing the performance of the position-specific score matrix (PSSM) and word embedding, PredLLPS_PSSM combined PSSM-based information and two deep learning frameworks. Independent tests using three existing independent test datasets and two newly constructed independent test datasets demonstrated the superiority of PredLLPS_PSSM compared with state-of-the-art methods. Furthermore, we tested PredLLPS_PSSM on nine experimentally identified LLPS proteins from three insects that were not included in any of the databases. In addition, the powerful Shapley Additive exPlanation algorithm and heatmap were applied to find the most critical amino acids relevant to LLPS.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
共享精神应助Puokn采纳,获得10
1秒前
1秒前
2秒前
英姑应助nannan采纳,获得10
2秒前
3秒前
英俊的铭应助HXJT采纳,获得10
3秒前
4秒前
5秒前
5秒前
zyl发布了新的文献求助20
7秒前
彭于晏应助amber采纳,获得10
7秒前
香蕉觅云应助橘子采纳,获得10
7秒前
8秒前
酷波er应助CiCi采纳,获得10
9秒前
9秒前
痴情的寒云完成签到 ,获得积分10
12秒前
小李发布了新的文献求助10
12秒前
linqitc发布了新的文献求助10
12秒前
生动的冰蓝完成签到 ,获得积分10
14秒前
17秒前
大胆的尔岚完成签到,获得积分10
18秒前
Joker完成签到 ,获得积分10
18秒前
18秒前
8R60d8应助我要发十篇sci采纳,获得10
20秒前
Yingyii完成签到,获得积分10
23秒前
白华苍松发布了新的文献求助10
24秒前
光亮妙之完成签到,获得积分10
24秒前
科研通AI2S应助迈克老狼采纳,获得10
24秒前
动听的银耳汤完成签到,获得积分10
25秒前
25秒前
源味怪豆完成签到,获得积分10
27秒前
28秒前
贪玩的访风完成签到 ,获得积分10
31秒前
汉堡包应助大白采纳,获得10
33秒前
含糊的耷完成签到,获得积分10
34秒前
35秒前
天天快乐应助快乐保温杯采纳,获得10
36秒前
榴莲小胖完成签到,获得积分10
36秒前
37秒前
37秒前
高分求助中
Spray / Wall-interaction Modelling by Dimensionless Data Analysis 2000
Evolution 3rd edition 1500
保险藏宝图 1000
Lire en communiste 1000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 700
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
Mathematics and Finite Element Discretizations of Incompressible Navier—Stokes Flows 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3186173
求助须知:如何正确求助?哪些是违规求助? 2836480
关于积分的说明 8009392
捐赠科研通 2498827
什么是DOI,文献DOI怎么找? 1333943
科研通“疑难数据库(出版商)”最低求助积分说明 636959
邀请新用户注册赠送积分活动 604854