PredLLPS_PSSM: a novel predictor for liquid–liquid protein separation identification based on evolutionary information and a deep neural network

计算机科学 鉴定(生物学) 深度学习 人工智能 计算生物学 人工神经网络 模式识别(心理学) 生物 植物
作者
Shengming Zhou,Y. Z. Zhou,Tian Liu,Juanjuan Zheng,Cangzhi Jia
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:24 (5)
标识
DOI:10.1093/bib/bbad299
摘要

The formation of biomolecular condensates by liquid-liquid phase separation (LLPS) has become a universal mechanism for spatiotemporal coordination of biological activities in cells and has been widely observed to directly regulate the key cellular processes involved in cancer cell pathology. However, the complexity of protein sequences and the diversity of conformations are inherently disordered, which poses great challenges for LLPS protein calculations and experimental research. Herein, we proposed a novel predictor named PredLLPS_PSSM for LLPS protein identification based only on sequence evolution information. Because finding real and reliable samples is the cornerstone of building predictors, we collected anew and collated the LLPS proteins from the latest versions of three databases. By comparing the performance of the position-specific score matrix (PSSM) and word embedding, PredLLPS_PSSM combined PSSM-based information and two deep learning frameworks. Independent tests using three existing independent test datasets and two newly constructed independent test datasets demonstrated the superiority of PredLLPS_PSSM compared with state-of-the-art methods. Furthermore, we tested PredLLPS_PSSM on nine experimentally identified LLPS proteins from three insects that were not included in any of the databases. In addition, the powerful Shapley Additive exPlanation algorithm and heatmap were applied to find the most critical amino acids relevant to LLPS.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hua发布了新的文献求助10
刚刚
_Forelsket_完成签到,获得积分10
刚刚
刚刚
半颗橙子完成签到 ,获得积分10
2秒前
科研通AI5应助zmy采纳,获得10
2秒前
善学以致用应助enoot采纳,获得10
3秒前
JamesPei应助失眠的血茗采纳,获得10
3秒前
青山发布了新的文献求助10
3秒前
亻鱼发布了新的文献求助10
4秒前
脑洞疼应助成就的小熊猫采纳,获得10
4秒前
4秒前
waterclouds完成签到 ,获得积分10
4秒前
圆圈儿完成签到,获得积分10
4秒前
司空剑封完成签到,获得积分10
5秒前
5秒前
海棠yiyi完成签到,获得积分10
5秒前
5秒前
梁小鑫发布了新的文献求助10
5秒前
Jenny应助圈圈采纳,获得10
6秒前
内向青文完成签到,获得积分10
6秒前
lefora完成签到,获得积分10
6秒前
丰知然应助CO2采纳,获得10
7秒前
Zhihu完成签到,获得积分10
7秒前
feng完成签到,获得积分10
8秒前
8秒前
美丽稀完成签到,获得积分10
9秒前
PXY应助屁王采纳,获得10
9秒前
sunburst完成签到,获得积分10
9秒前
狼主完成签到 ,获得积分10
9秒前
吕亦寒完成签到,获得积分10
9秒前
junzilan发布了新的文献求助10
10秒前
ZL发布了新的文献求助10
10秒前
10秒前
亻鱼完成签到,获得积分10
10秒前
超级蘑菇完成签到 ,获得积分10
11秒前
11秒前
11秒前
congguitar完成签到,获得积分10
11秒前
12秒前
limof完成签到,获得积分20
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740