PredLLPS_PSSM: a novel predictor for liquid–liquid protein separation identification based on evolutionary information and a deep neural network

计算机科学 鉴定(生物学) 深度学习 人工智能 计算生物学 人工神经网络 模式识别(心理学) 生物 植物
作者
Shengming Zhou,Y. Z. Zhou,Tian Liu,Juanjuan Zheng,Cangzhi Jia
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:24 (5)
标识
DOI:10.1093/bib/bbad299
摘要

The formation of biomolecular condensates by liquid-liquid phase separation (LLPS) has become a universal mechanism for spatiotemporal coordination of biological activities in cells and has been widely observed to directly regulate the key cellular processes involved in cancer cell pathology. However, the complexity of protein sequences and the diversity of conformations are inherently disordered, which poses great challenges for LLPS protein calculations and experimental research. Herein, we proposed a novel predictor named PredLLPS_PSSM for LLPS protein identification based only on sequence evolution information. Because finding real and reliable samples is the cornerstone of building predictors, we collected anew and collated the LLPS proteins from the latest versions of three databases. By comparing the performance of the position-specific score matrix (PSSM) and word embedding, PredLLPS_PSSM combined PSSM-based information and two deep learning frameworks. Independent tests using three existing independent test datasets and two newly constructed independent test datasets demonstrated the superiority of PredLLPS_PSSM compared with state-of-the-art methods. Furthermore, we tested PredLLPS_PSSM on nine experimentally identified LLPS proteins from three insects that were not included in any of the databases. In addition, the powerful Shapley Additive exPlanation algorithm and heatmap were applied to find the most critical amino acids relevant to LLPS.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
咔哆完成签到,获得积分10
1秒前
1秒前
Hyh_orz应助小吴同学采纳,获得10
2秒前
零蝉发布了新的文献求助10
4秒前
5秒前
111966完成签到,获得积分10
5秒前
5秒前
今后应助胡椒味煎蛋采纳,获得10
5秒前
6秒前
8秒前
8秒前
shero完成签到,获得积分10
8秒前
桐桐应助甜橘采纳,获得10
8秒前
9秒前
9秒前
落寞太阳完成签到,获得积分10
10秒前
Paul完成签到,获得积分20
10秒前
10秒前
bobo发布了新的文献求助10
11秒前
11秒前
12秒前
包容的映天完成签到 ,获得积分10
12秒前
moralz发布了新的文献求助10
13秒前
13秒前
15秒前
LUO完成签到,获得积分10
15秒前
15秒前
科研通AI2S应助动听的平露采纳,获得20
15秒前
烟花应助爱学习爱劳动采纳,获得10
16秒前
17秒前
小二郎应助纯真寄云采纳,获得10
17秒前
ccc完成签到 ,获得积分10
17秒前
lila发布了新的文献求助10
18秒前
moralz完成签到,获得积分10
18秒前
顾矜应助fanfan采纳,获得10
18秒前
19秒前
轻松的嚣应助无所吊谓采纳,获得10
20秒前
甜橘发布了新的文献求助10
21秒前
OnMyWorldside发布了新的文献求助10
22秒前
余一台完成签到,获得积分10
24秒前
高分求助中
Spray / Wall-interaction Modelling by Dimensionless Data Analysis 2000
Aspects of Babylonian celestial divination: the lunar eclipse tablets of Enūma Anu Enlil 500
Mathematics and Finite Element Discretizations of Incompressible Navier—Stokes Flows 500
Dictionary of socialism 350
Mixed-anion Compounds 300
Geochemistry, 2nd Edition 地球化学经典教科书第二版 300
Idoxuridine 260
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3195587
求助须知:如何正确求助?哪些是违规求助? 2844422
关于积分的说明 8049966
捐赠科研通 2509066
什么是DOI,文献DOI怎么找? 1341399
科研通“疑难数据库(出版商)”最低求助积分说明 639124
邀请新用户注册赠送积分活动 608292