PredLLPS_PSSM: a novel predictor for liquid–liquid protein separation identification based on evolutionary information and a deep neural network

计算机科学 鉴定(生物学) 深度学习 人工智能 计算生物学 人工神经网络 模式识别(心理学) 生物 植物
作者
Shengming Zhou,Y. Z. Zhou,Tian Liu,Juanjuan Zheng,Cangzhi Jia
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:24 (5)
标识
DOI:10.1093/bib/bbad299
摘要

The formation of biomolecular condensates by liquid-liquid phase separation (LLPS) has become a universal mechanism for spatiotemporal coordination of biological activities in cells and has been widely observed to directly regulate the key cellular processes involved in cancer cell pathology. However, the complexity of protein sequences and the diversity of conformations are inherently disordered, which poses great challenges for LLPS protein calculations and experimental research. Herein, we proposed a novel predictor named PredLLPS_PSSM for LLPS protein identification based only on sequence evolution information. Because finding real and reliable samples is the cornerstone of building predictors, we collected anew and collated the LLPS proteins from the latest versions of three databases. By comparing the performance of the position-specific score matrix (PSSM) and word embedding, PredLLPS_PSSM combined PSSM-based information and two deep learning frameworks. Independent tests using three existing independent test datasets and two newly constructed independent test datasets demonstrated the superiority of PredLLPS_PSSM compared with state-of-the-art methods. Furthermore, we tested PredLLPS_PSSM on nine experimentally identified LLPS proteins from three insects that were not included in any of the databases. In addition, the powerful Shapley Additive exPlanation algorithm and heatmap were applied to find the most critical amino acids relevant to LLPS.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Mcarry发布了新的文献求助20
1秒前
1秒前
XiYang发布了新的文献求助10
2秒前
2秒前
2秒前
饺子完成签到,获得积分10
2秒前
4秒前
Hello应助zjmm采纳,获得10
5秒前
RPG完成签到,获得积分10
6秒前
风中刺猬发布了新的文献求助10
6秒前
慈祥的夏岚完成签到,获得积分10
6秒前
Akim应助Xiong采纳,获得10
7秒前
Amen发布了新的文献求助10
8秒前
pphe发布了新的文献求助10
8秒前
研友_VZG7GZ应助user_huang采纳,获得10
9秒前
9秒前
le发布了新的文献求助10
10秒前
田様应助ZQZ采纳,获得10
10秒前
毛豆应助布梨采纳,获得10
12秒前
风中刺猬完成签到,获得积分10
13秒前
qweqwe完成签到,获得积分10
13秒前
求文完成签到,获得积分10
13秒前
14秒前
14秒前
干净水彤完成签到 ,获得积分10
14秒前
斯文败类应助彪壮的绮烟采纳,获得30
15秒前
Mcarry完成签到,获得积分10
15秒前
16秒前
le完成签到,获得积分10
16秒前
16秒前
JonyQ发布了新的文献求助10
17秒前
17秒前
传奇3应助枯藤老柳树采纳,获得10
18秒前
虎虎虎发布了新的文献求助10
18秒前
丘比特应助大胆小熊猫采纳,获得10
19秒前
Xiong发布了新的文献求助10
20秒前
22秒前
不配.应助风行水上采纳,获得20
22秒前
vicky完成签到,获得积分10
22秒前
高分求助中
Spray / Wall-interaction Modelling by Dimensionless Data Analysis 2000
Write Like a Chemist: A Guide and Resource (第二版) 600
Mixed-anion Compounds 600
ALA生合成不全マウスでの糖代謝異常の分子機構解析 520
Earth System Geophysics 500
Aspects of Babylonian celestial divination: the lunar eclipse tablets of Enūma Anu Enlil 500
Geochemistry, 2nd Edition 地球化学经典教科书第二版 401
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3199568
求助须知:如何正确求助?哪些是违规求助? 2848333
关于积分的说明 8067643
捐赠科研通 2513090
什么是DOI,文献DOI怎么找? 1345419
科研通“疑难数据库(出版商)”最低求助积分说明 640058
邀请新用户注册赠送积分活动 609751