亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

PredLLPS_PSSM: a novel predictor for liquid–liquid protein separation identification based on evolutionary information and a deep neural network

计算机科学 鉴定(生物学) 深度学习 人工智能 计算生物学 人工神经网络 模式识别(心理学) 生物 植物
作者
Shengming Zhou,Y. Z. Zhou,Tian Liu,Juanjuan Zheng,Cangzhi Jia
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:24 (5)
标识
DOI:10.1093/bib/bbad299
摘要

The formation of biomolecular condensates by liquid-liquid phase separation (LLPS) has become a universal mechanism for spatiotemporal coordination of biological activities in cells and has been widely observed to directly regulate the key cellular processes involved in cancer cell pathology. However, the complexity of protein sequences and the diversity of conformations are inherently disordered, which poses great challenges for LLPS protein calculations and experimental research. Herein, we proposed a novel predictor named PredLLPS_PSSM for LLPS protein identification based only on sequence evolution information. Because finding real and reliable samples is the cornerstone of building predictors, we collected anew and collated the LLPS proteins from the latest versions of three databases. By comparing the performance of the position-specific score matrix (PSSM) and word embedding, PredLLPS_PSSM combined PSSM-based information and two deep learning frameworks. Independent tests using three existing independent test datasets and two newly constructed independent test datasets demonstrated the superiority of PredLLPS_PSSM compared with state-of-the-art methods. Furthermore, we tested PredLLPS_PSSM on nine experimentally identified LLPS proteins from three insects that were not included in any of the databases. In addition, the powerful Shapley Additive exPlanation algorithm and heatmap were applied to find the most critical amino acids relevant to LLPS.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
贺俊龙发布了新的文献求助10
2秒前
3秒前
蛋白积聚完成签到,获得积分10
7秒前
风清扬应助mengmeng采纳,获得30
7秒前
10秒前
零_发布了新的文献求助10
10秒前
康康舞曲完成签到 ,获得积分10
12秒前
秋作完成签到,获得积分10
15秒前
15秒前
米其林发布了新的文献求助30
17秒前
19秒前
KON完成签到,获得积分10
21秒前
24秒前
黎明完成签到,获得积分10
28秒前
零_完成签到,获得积分10
29秒前
负责代珊完成签到,获得积分10
30秒前
SciGPT应助123采纳,获得10
30秒前
30秒前
黎明发布了新的文献求助10
32秒前
研友_VZG7GZ应助怦然心动采纳,获得10
33秒前
领导范儿应助王老裂采纳,获得80
34秒前
36秒前
brwen完成签到,获得积分10
39秒前
dax大雄完成签到 ,获得积分10
43秒前
46秒前
48秒前
49秒前
科研通AI6应助科研通管家采纳,获得10
50秒前
浮游应助科研通管家采纳,获得30
50秒前
共享精神应助科研通管家采纳,获得10
50秒前
田様应助科研通管家采纳,获得10
50秒前
ding应助科研通管家采纳,获得10
50秒前
浮游应助科研通管家采纳,获得10
50秒前
Hello应助科研通管家采纳,获得10
50秒前
ZZZ完成签到,获得积分10
53秒前
羊羊羊发布了新的文献求助10
53秒前
歪歪吸发布了新的文献求助10
53秒前
54秒前
xiaokun发布了新的文献求助10
54秒前
123发布了新的文献求助10
54秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
A Half Century of the Sonogashira Reaction 1000
Artificial Intelligence driven Materials Design 600
Investigation the picking techniques for developing and improving the mechanical harvesting of citrus 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5185944
求助须知:如何正确求助?哪些是违规求助? 4371293
关于积分的说明 13612012
捐赠科研通 4223623
什么是DOI,文献DOI怎么找? 2316534
邀请新用户注册赠送积分活动 1315159
关于科研通互助平台的介绍 1264147