PredLLPS_PSSM: a novel predictor for liquid–liquid protein separation identification based on evolutionary information and a deep neural network

计算机科学 鉴定(生物学) 深度学习 人工智能 计算生物学 人工神经网络 模式识别(心理学) 生物 植物
作者
Shengming Zhou,Y. Z. Zhou,Tian Liu,Juanjuan Zheng,Cangzhi Jia
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:24 (5)
标识
DOI:10.1093/bib/bbad299
摘要

The formation of biomolecular condensates by liquid-liquid phase separation (LLPS) has become a universal mechanism for spatiotemporal coordination of biological activities in cells and has been widely observed to directly regulate the key cellular processes involved in cancer cell pathology. However, the complexity of protein sequences and the diversity of conformations are inherently disordered, which poses great challenges for LLPS protein calculations and experimental research. Herein, we proposed a novel predictor named PredLLPS_PSSM for LLPS protein identification based only on sequence evolution information. Because finding real and reliable samples is the cornerstone of building predictors, we collected anew and collated the LLPS proteins from the latest versions of three databases. By comparing the performance of the position-specific score matrix (PSSM) and word embedding, PredLLPS_PSSM combined PSSM-based information and two deep learning frameworks. Independent tests using three existing independent test datasets and two newly constructed independent test datasets demonstrated the superiority of PredLLPS_PSSM compared with state-of-the-art methods. Furthermore, we tested PredLLPS_PSSM on nine experimentally identified LLPS proteins from three insects that were not included in any of the databases. In addition, the powerful Shapley Additive exPlanation algorithm and heatmap were applied to find the most critical amino acids relevant to LLPS.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
领导范儿应助年轻的靖采纳,获得30
2秒前
2秒前
钱一二完成签到,获得积分10
3秒前
谨慎的雍完成签到,获得积分10
3秒前
3秒前
研友_VZG7GZ应助guard采纳,获得10
3秒前
4秒前
健忘书兰发布了新的文献求助10
4秒前
4秒前
4秒前
黎黎完成签到,获得积分10
4秒前
林林完成签到,获得积分10
5秒前
酷炫萃完成签到,获得积分20
5秒前
人间枝头发布了新的文献求助10
6秒前
CodeCraft应助一只生物狗采纳,获得10
6秒前
109902RQ发布了新的文献求助10
8秒前
8秒前
8秒前
8秒前
8秒前
汉堡包应助科研顺利采纳,获得10
8秒前
DouDou完成签到,获得积分10
9秒前
小田完成签到,获得积分10
9秒前
ding发布了新的文献求助10
9秒前
Anhan发布了新的文献求助10
10秒前
赵雅芝应助打工人章鱼哥采纳,获得10
11秒前
Jasper应助琦琦采纳,获得10
11秒前
11秒前
flos发布了新的文献求助10
12秒前
sunshine完成签到 ,获得积分10
13秒前
23发布了新的文献求助10
13秒前
Maestro_S应助田一点采纳,获得10
14秒前
鱼蛋丸子发布了新的文献求助10
14秒前
小蘑菇应助珍惜采纳,获得10
14秒前
15秒前
orixero应助彪壮的青雪采纳,获得10
15秒前
luo完成签到,获得积分20
15秒前
109902RQ完成签到,获得积分20
16秒前
wfs完成签到,获得积分10
16秒前
高分求助中
Spray / Wall-interaction Modelling by Dimensionless Data Analysis 2000
Mixed-anion Compounds 600
ALA生合成不全マウスでの糖代謝異常の分子機構解析 520
China as a Double-Bind Regulatory State: How Internet Regulators’ Predicament Produces Regulatees’ Autonomy 500
Aspects of Babylonian celestial divination: the lunar eclipse tablets of Enūma Anu Enlil 500
Geochemistry, 2nd Edition 地球化学经典教科书第二版 401
2024 Medicinal Chemistry Reviews 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3199060
求助须知:如何正确求助?哪些是违规求助? 2847958
关于积分的说明 8065446
捐赠科研通 2512681
什么是DOI,文献DOI怎么找? 1344652
科研通“疑难数据库(出版商)”最低求助积分说明 639845
邀请新用户注册赠送积分活动 609663