PredLLPS_PSSM: a novel predictor for liquid–liquid protein separation identification based on evolutionary information and a deep neural network

计算机科学 鉴定(生物学) 深度学习 人工智能 计算生物学 人工神经网络 模式识别(心理学) 生物 植物
作者
Shengming Zhou,Y. Z. Zhou,Tian Liu,Juanjuan Zheng,Cangzhi Jia
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:24 (5)
标识
DOI:10.1093/bib/bbad299
摘要

The formation of biomolecular condensates by liquid-liquid phase separation (LLPS) has become a universal mechanism for spatiotemporal coordination of biological activities in cells and has been widely observed to directly regulate the key cellular processes involved in cancer cell pathology. However, the complexity of protein sequences and the diversity of conformations are inherently disordered, which poses great challenges for LLPS protein calculations and experimental research. Herein, we proposed a novel predictor named PredLLPS_PSSM for LLPS protein identification based only on sequence evolution information. Because finding real and reliable samples is the cornerstone of building predictors, we collected anew and collated the LLPS proteins from the latest versions of three databases. By comparing the performance of the position-specific score matrix (PSSM) and word embedding, PredLLPS_PSSM combined PSSM-based information and two deep learning frameworks. Independent tests using three existing independent test datasets and two newly constructed independent test datasets demonstrated the superiority of PredLLPS_PSSM compared with state-of-the-art methods. Furthermore, we tested PredLLPS_PSSM on nine experimentally identified LLPS proteins from three insects that were not included in any of the databases. In addition, the powerful Shapley Additive exPlanation algorithm and heatmap were applied to find the most critical amino acids relevant to LLPS.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
清秀问芙完成签到 ,获得积分20
1秒前
Yy发布了新的文献求助10
1秒前
2秒前
霸气映之完成签到,获得积分10
4秒前
curtisness应助乐观夜蕾采纳,获得10
5秒前
寒冷的白桃完成签到 ,获得积分10
8秒前
酷波er应助鱼鱼片片采纳,获得10
8秒前
Avery完成签到,获得积分10
8秒前
12秒前
心想事陈同学完成签到,获得积分10
13秒前
14秒前
烟花应助虚心的爆米花采纳,获得10
16秒前
17秒前
杨yy完成签到,获得积分20
17秒前
Avery发布了新的文献求助10
19秒前
田様应助小鱼采纳,获得10
19秒前
22秒前
我是老大应助陈丫采纳,获得10
26秒前
26秒前
27秒前
852应助黄可以采纳,获得10
28秒前
风中雪一完成签到,获得积分10
28秒前
29秒前
A宇完成签到,获得积分10
30秒前
moon发布了新的文献求助10
31秒前
大猫喵喵喵完成签到,获得积分10
31秒前
31秒前
chen7完成签到,获得积分10
32秒前
32秒前
34秒前
34秒前
萧又莲发布了新的文献求助10
36秒前
37秒前
37秒前
易拉罐发布了新的文献求助10
39秒前
42秒前
乔治发布了新的文献求助10
42秒前
43秒前
45秒前
CipherSage应助帅气的绿凝采纳,获得10
47秒前
高分求助中
Spray / Wall-interaction Modelling by Dimensionless Data Analysis 2000
Evolution 3rd edition 1500
保险藏宝图 1000
Lire en communiste 1000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 700
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
Mathematics and Finite Element Discretizations of Incompressible Navier—Stokes Flows 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3185785
求助须知:如何正确求助?哪些是违规求助? 2836080
关于积分的说明 8007573
捐赠科研通 2498547
什么是DOI,文献DOI怎么找? 1333577
科研通“疑难数据库(出版商)”最低求助积分说明 636881
邀请新用户注册赠送积分活动 604658