PredLLPS_PSSM: a novel predictor for liquid–liquid protein separation identification based on evolutionary information and a deep neural network

计算机科学 鉴定(生物学) 深度学习 人工智能 计算生物学 人工神经网络 模式识别(心理学) 生物 植物
作者
Shengming Zhou,Y. Z. Zhou,Tian Liu,Juanjuan Zheng,Cangzhi Jia
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:24 (5)
标识
DOI:10.1093/bib/bbad299
摘要

The formation of biomolecular condensates by liquid-liquid phase separation (LLPS) has become a universal mechanism for spatiotemporal coordination of biological activities in cells and has been widely observed to directly regulate the key cellular processes involved in cancer cell pathology. However, the complexity of protein sequences and the diversity of conformations are inherently disordered, which poses great challenges for LLPS protein calculations and experimental research. Herein, we proposed a novel predictor named PredLLPS_PSSM for LLPS protein identification based only on sequence evolution information. Because finding real and reliable samples is the cornerstone of building predictors, we collected anew and collated the LLPS proteins from the latest versions of three databases. By comparing the performance of the position-specific score matrix (PSSM) and word embedding, PredLLPS_PSSM combined PSSM-based information and two deep learning frameworks. Independent tests using three existing independent test datasets and two newly constructed independent test datasets demonstrated the superiority of PredLLPS_PSSM compared with state-of-the-art methods. Furthermore, we tested PredLLPS_PSSM on nine experimentally identified LLPS proteins from three insects that were not included in any of the databases. In addition, the powerful Shapley Additive exPlanation algorithm and heatmap were applied to find the most critical amino acids relevant to LLPS.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
善学以致用应助adore采纳,获得10
刚刚
1秒前
材袅完成签到,获得积分10
1秒前
3秒前
3秒前
不配.应助积极的初南采纳,获得10
4秒前
4秒前
小熊发布了新的文献求助10
6秒前
齐嘉懿完成签到,获得积分10
6秒前
景茶茶完成签到 ,获得积分10
6秒前
snackdragon完成签到 ,获得积分10
7秒前
炫哥IRIS发布了新的文献求助10
7秒前
oncoma完成签到 ,获得积分10
8秒前
a1424346464完成签到,获得积分10
8秒前
影子羊发布了新的文献求助10
9秒前
psy小渺发布了新的文献求助30
9秒前
9秒前
小困困完成签到,获得积分10
9秒前
10秒前
LJJZZX完成签到,获得积分10
11秒前
11秒前
ccz完成签到,获得积分20
12秒前
苦逼完成签到,获得积分10
12秒前
Danish完成签到,获得积分10
12秒前
14秒前
14秒前
14秒前
15秒前
Ava应助kkhenry采纳,获得10
16秒前
adore发布了新的文献求助10
16秒前
MWSURE完成签到,获得积分10
18秒前
19秒前
健忘问兰完成签到,获得积分10
20秒前
Orange应助witting采纳,获得10
20秒前
派大星完成签到,获得积分10
21秒前
22秒前
24秒前
夹心发布了新的文献求助10
26秒前
能干柚子完成签到,获得积分20
27秒前
高分求助中
Spray / Wall-interaction Modelling by Dimensionless Data Analysis 2000
ALA生合成不全マウスでの糖代謝異常の分子機構解析 520
Mathematics and Finite Element Discretizations of Incompressible Navier—Stokes Flows 500
2024 Medicinal Chemistry Reviews 400
Dictionary of socialism 350
Geochemistry, 2nd Edition 地球化学经典教科书第二版 300
Idoxuridine 260
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3193923
求助须知:如何正确求助?哪些是违规求助? 2842889
关于积分的说明 8041843
捐赠科研通 2507200
什么是DOI,文献DOI怎么找? 1339733
科研通“疑难数据库(出版商)”最低求助积分说明 638789
邀请新用户注册赠送积分活动 607628