PredLLPS_PSSM: a novel predictor for liquid–liquid protein separation identification based on evolutionary information and a deep neural network

计算机科学 鉴定(生物学) 深度学习 人工智能 计算生物学 人工神经网络 模式识别(心理学) 生物 植物
作者
Shengming Zhou,Y. Z. Zhou,Tian Liu,Juanjuan Zheng,Cangzhi Jia
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:24 (5)
标识
DOI:10.1093/bib/bbad299
摘要

The formation of biomolecular condensates by liquid-liquid phase separation (LLPS) has become a universal mechanism for spatiotemporal coordination of biological activities in cells and has been widely observed to directly regulate the key cellular processes involved in cancer cell pathology. However, the complexity of protein sequences and the diversity of conformations are inherently disordered, which poses great challenges for LLPS protein calculations and experimental research. Herein, we proposed a novel predictor named PredLLPS_PSSM for LLPS protein identification based only on sequence evolution information. Because finding real and reliable samples is the cornerstone of building predictors, we collected anew and collated the LLPS proteins from the latest versions of three databases. By comparing the performance of the position-specific score matrix (PSSM) and word embedding, PredLLPS_PSSM combined PSSM-based information and two deep learning frameworks. Independent tests using three existing independent test datasets and two newly constructed independent test datasets demonstrated the superiority of PredLLPS_PSSM compared with state-of-the-art methods. Furthermore, we tested PredLLPS_PSSM on nine experimentally identified LLPS proteins from three insects that were not included in any of the databases. In addition, the powerful Shapley Additive exPlanation algorithm and heatmap were applied to find the most critical amino acids relevant to LLPS.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
搜集达人应助obito采纳,获得20
刚刚
eternity136发布了新的文献求助10
4秒前
Georgechan发布了新的文献求助30
5秒前
hyhyhyhy发布了新的文献求助10
6秒前
8秒前
Deer发布了新的文献求助10
9秒前
白皮憨憨完成签到,获得积分10
9秒前
orixero应助lelouch采纳,获得10
14秒前
坦率金鱼发布了新的文献求助10
15秒前
李烛尘完成签到,获得积分10
16秒前
16秒前
Yilion完成签到,获得积分10
17秒前
18秒前
懵懂的映菱完成签到,获得积分10
18秒前
19秒前
lxz3131发布了新的文献求助10
20秒前
20秒前
20秒前
21秒前
22秒前
slchein发布了新的文献求助10
25秒前
25秒前
lelouch发布了新的文献求助10
25秒前
科研通AI2S应助锣大炮采纳,获得30
26秒前
mmhahaha发布了新的文献求助10
26秒前
27秒前
朴素尔蓝完成签到,获得积分10
29秒前
小酒迟疑发布了新的文献求助10
30秒前
lelouch完成签到,获得积分10
31秒前
深情安青应助Guoqiang采纳,获得10
33秒前
慕青应助Guoqiang采纳,获得10
34秒前
小二郎应助Guoqiang采纳,获得10
34秒前
Ava应助Guoqiang采纳,获得10
34秒前
eternity136完成签到,获得积分10
36秒前
灵巧书雪发布了新的文献求助10
38秒前
38秒前
38秒前
Deer完成签到,获得积分10
38秒前
汉堡包应助奋斗的伟宸采纳,获得10
38秒前
高分求助中
Spray / Wall-interaction Modelling by Dimensionless Data Analysis 2000
Mixed-anion Compounds 600
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Earth System Geophysics 500
Aspects of Babylonian celestial divination: the lunar eclipse tablets of Enūma Anu Enlil 500
Geochemistry, 2nd Edition 地球化学经典教科书第二版 401
2024 Medicinal Chemistry Reviews 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3200261
求助须知:如何正确求助?哪些是违规求助? 2850081
关于积分的说明 8070833
捐赠科研通 2513860
什么是DOI,文献DOI怎么找? 1346693
科研通“疑难数据库(出版商)”最低求助积分说明 640252
邀请新用户注册赠送积分活动 610214