氧气
氧化物
X射线光电子能谱
化学吸附
吸附
材料科学
氧化剂
金属
纳米技术
密度泛函理论
化学工程
分析化学(期刊)
化学
物理化学
计算化学
有机化学
冶金
工程类
色谱法
作者
Gyuweon Jung,Suyeon Ju,Kangwook Choi,Jaehyeon Kim,Seongbin Hong,Jinwoo Park,Wonjun Shin,Yujeong Jeong,Seungwu Han,Woo Young Choi,Jong‐Ho Lee
出处
期刊:ACS Nano
[American Chemical Society]
日期:2023-08-23
卷期号:17 (18): 17790-17798
被引量:12
标识
DOI:10.1021/acsnano.3c03034
摘要
Oxygen vacancies and adsorbed oxygen species on metal oxide surfaces play important roles in various fields. However, existing methods for manipulating surface oxygen require severe settings and are ineffective for repetitive manipulation. We present a method to manipulate the amount of surface oxygen by modifying the oxygen adsorption energy by electrically controlling the electron concentration of the metal oxide. The surface oxygen control ability of the method is verified using first-principles calculations based on density functional theory (DFT), X-ray photoelectron spectroscopy (XPS), and electrical resistance analysis. The presented method is implemented by fabricating oxide thin film transistors with embedded microheaters. The method can reconfigure the oxygen vacancies on the In2O3, SnO2, and IGZO surfaces so that specific chemisorption dominates. The method can selectively increase oxidizing (e.g., NO and NO) and reducing gas (e.g., H2S, NH3, and CO) reactions by electrically controlling the metal oxide surface to be oxygen vacancy-rich or adsorbed oxygen species-rich. The proposed method is applied to gas sensors and overcomes their existing limitations. The method makes the sensor insensitive to one gas (e.g., H2S) in mixed-gas environments (e.g., NO2+H2S) and provides a linear response (R2 = 0.998) to the target gas (e.g., NO2) concentration within 3 s. We believe that the proposed method is applicable to applications utilizing metal oxide surfaces.
科研通智能强力驱动
Strongly Powered by AbleSci AI