亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

scMHNN: a novel hypergraph neural network for integrative analysis of single-cell epigenomic, transcriptomic and proteomic data

计算机科学 超图 数据集成 表观遗传学 模态(人机交互) 注释 人工智能 数据挖掘 机器学习 生物 生物化学 基因表达 数学 离散数学 基因 DNA甲基化
作者
Wei Li,Bin Xiang,Fan Yang,Yu Rong,Yanbin Yin,Jianhua Yao,Han Zhang
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:24 (6) 被引量:3
标识
DOI:10.1093/bib/bbad391
摘要

Technological advances have now made it possible to simultaneously profile the changes of epigenomic, transcriptomic and proteomic at the single cell level, allowing a more unified view of cellular phenotypes and heterogeneities. However, current computational tools for single-cell multi-omics data integration are mainly tailored for bi-modality data, so new tools are urgently needed to integrate tri-modality data with complex associations. To this end, we develop scMHNN to integrate single-cell multi-omics data based on hypergraph neural network. After modeling the complex data associations among various modalities, scMHNN performs message passing process on the multi-omics hypergraph, which can capture the high-order data relationships and integrate the multiple heterogeneous features. Followingly, scMHNN learns discriminative cell representation via a dual-contrastive loss in self-supervised manner. Based on the pretrained hypergraph encoder, we further introduce the pre-training and fine-tuning paradigm, which allows more accurate cell-type annotation with only a small number of labeled cells as reference. Benchmarking results on real and simulated single-cell tri-modality datasets indicate that scMHNN outperforms other competing methods on both cell clustering and cell-type annotation tasks. In addition, we also demonstrate scMHNN facilitates various downstream tasks, such as cell marker detection and enrichment analysis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
朴素的山蝶完成签到 ,获得积分10
2秒前
7秒前
英俊的铭应助自觉的人龙采纳,获得10
7秒前
8秒前
yueying完成签到,获得积分10
9秒前
11秒前
11秒前
kentonchow应助微笑睫毛采纳,获得10
11秒前
12秒前
12秒前
Celeste发布了新的文献求助10
13秒前
xu完成签到,获得积分10
14秒前
kentonchow应助小解采纳,获得10
14秒前
Shawn发布了新的文献求助10
16秒前
ho应助科研通管家采纳,获得10
19秒前
ho应助科研通管家采纳,获得10
19秒前
19秒前
Celeste发布了新的文献求助10
44秒前
Akim应助Candices采纳,获得10
49秒前
56秒前
Pikaluo发布了新的文献求助10
59秒前
今后应助Celeste采纳,获得10
1分钟前
Candices完成签到,获得积分10
1分钟前
细心八宝粥完成签到 ,获得积分10
1分钟前
1分钟前
Zeeki完成签到 ,获得积分10
1分钟前
lllllllllzx完成签到,获得积分10
1分钟前
ceeray23发布了新的文献求助200
1分钟前
Pikaluo完成签到,获得积分10
1分钟前
希望天下0贩的0应助tt采纳,获得10
1分钟前
1分钟前
1分钟前
顺颂时祺发布了新的文献求助10
1分钟前
1分钟前
2分钟前
FG发布了新的文献求助10
2分钟前
2分钟前
2分钟前
tt完成签到,获得积分20
2分钟前
tt发布了新的文献求助10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The Experimental Biology of Bryophytes 500
Rural Geographies People, Place and the Countryside 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5376400
求助须知:如何正确求助?哪些是违规求助? 4501498
关于积分的说明 14013106
捐赠科研通 4409293
什么是DOI,文献DOI怎么找? 2422135
邀请新用户注册赠送积分活动 1414947
关于科研通互助平台的介绍 1391827