Multi-Label Clinical Time-Series Generation via Conditional GAN

计算机科学 人工智能 合成数据 机器学习 深度学习 瓶颈 时间序列 数据挖掘 嵌入式系统
作者
Chang Lü,Chandan K. Reddy,Ping Wang,Dong Nie,Yue Ning
出处
期刊:IEEE Transactions on Knowledge and Data Engineering [Institute of Electrical and Electronics Engineers]
卷期号:36 (4): 1728-1740 被引量:6
标识
DOI:10.1109/tkde.2023.3310909
摘要

In recent years, deep learning has been successfully adopted in a wide range of applications related to electronic health records (EHRs) such as representation learning and clinical event prediction. However, due to privacy constraints, limited access to EHR becomes a bottleneck for deep learning research. To mitigate these concerns, generative adversarial networks (GANs) have been successfully used for generating EHR data. However, there are still challenges in high-quality EHR generation, including generating time-series EHR data and imbalanced uncommon diseases. In this work, we propose a M ulti-label T ime-series GAN (MTGAN) to generate EHR and simultaneously improve the quality of uncommon disease generation. The generator of MTGAN uses a gated recurrent unit (GRU) with a smooth conditional matrix to generate sequences and uncommon diseases. The critic gives scores using Wasserstein distance to recognize real samples from synthetic samples by considering both data and temporal features. We also propose a training strategy to calculate temporal features for real data and stabilize GAN training. Furthermore, we design multiple statistical metrics and prediction tasks to evaluate the generated data. Experimental results demonstrate the quality of the synthetic data and the effectiveness of MTGAN in generating realistic sequential EHR data, especially for uncommon diseases.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
shatang完成签到,获得积分10
刚刚
1秒前
Owen应助一天八杯水采纳,获得10
1秒前
所所应助静静子采纳,获得10
2秒前
所所应助jy采纳,获得10
2秒前
hkxfg完成签到,获得积分10
2秒前
duo完成签到,获得积分10
3秒前
4秒前
spurs17发布了新的文献求助10
4秒前
4秒前
善学以致用应助BaekHyun采纳,获得10
4秒前
5秒前
5秒前
nanhe698完成签到,获得积分10
6秒前
6秒前
李本来完成签到,获得积分20
7秒前
看看发布了新的文献求助10
7秒前
ZZY完成签到,获得积分10
7秒前
DQY完成签到,获得积分10
8秒前
BONBON完成签到,获得积分20
8秒前
动听导师发布了新的文献求助10
9秒前
9秒前
季忆完成签到,获得积分10
9秒前
小周发布了新的文献求助10
10秒前
smile发布了新的文献求助10
10秒前
11秒前
Lore完成签到 ,获得积分10
11秒前
11秒前
jiang完成签到,获得积分10
12秒前
12秒前
无奈的酒窝关注了科研通微信公众号
13秒前
毛毛完成签到,获得积分10
13秒前
正在完成签到,获得积分10
14秒前
14秒前
充电宝应助JR采纳,获得10
15秒前
15秒前
cc完成签到,获得积分20
15秒前
李爱国应助111采纳,获得10
15秒前
jy发布了新的文献求助10
15秒前
好好完成签到 ,获得积分10
16秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527928
求助须知:如何正确求助?哪些是违规求助? 3108040
关于积分的说明 9287614
捐赠科研通 2805836
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709808