Multi-Label Clinical Time-Series Generation via Conditional GAN

计算机科学 人工智能 合成数据 机器学习 深度学习 瓶颈 时间序列 数据挖掘 嵌入式系统
作者
Chang Lü,Chandan K. Reddy,Ping Wang,Dong Nie,Yue Ning
出处
期刊:IEEE Transactions on Knowledge and Data Engineering [Institute of Electrical and Electronics Engineers]
卷期号:36 (4): 1728-1740 被引量:6
标识
DOI:10.1109/tkde.2023.3310909
摘要

In recent years, deep learning has been successfully adopted in a wide range of applications related to electronic health records (EHRs) such as representation learning and clinical event prediction. However, due to privacy constraints, limited access to EHR becomes a bottleneck for deep learning research. To mitigate these concerns, generative adversarial networks (GANs) have been successfully used for generating EHR data. However, there are still challenges in high-quality EHR generation, including generating time-series EHR data and imbalanced uncommon diseases. In this work, we propose a M ulti-label T ime-series GAN (MTGAN) to generate EHR and simultaneously improve the quality of uncommon disease generation. The generator of MTGAN uses a gated recurrent unit (GRU) with a smooth conditional matrix to generate sequences and uncommon diseases. The critic gives scores using Wasserstein distance to recognize real samples from synthetic samples by considering both data and temporal features. We also propose a training strategy to calculate temporal features for real data and stabilize GAN training. Furthermore, we design multiple statistical metrics and prediction tasks to evaluate the generated data. Experimental results demonstrate the quality of the synthetic data and the effectiveness of MTGAN in generating realistic sequential EHR data, especially for uncommon diseases.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
1秒前
小马甲应助温暖采纳,获得10
1秒前
善学以致用应助123采纳,获得10
1秒前
hanfo发布了新的文献求助10
2秒前
2秒前
2秒前
ding应助哈雷彗星采纳,获得10
2秒前
慕青应助Riggle G采纳,获得10
2秒前
FashionBoy应助缓慢钢笔采纳,获得10
3秒前
凌灵翎完成签到,获得积分10
3秒前
无极微光应助健康的宛菡采纳,获得20
4秒前
4秒前
4秒前
4秒前
5秒前
5秒前
游戏那我可徐完成签到 ,获得积分10
5秒前
呆呆完成签到 ,获得积分10
6秒前
7秒前
7秒前
强健的缘郡完成签到,获得积分20
7秒前
Leone发布了新的文献求助10
7秒前
852应助等待书雪采纳,获得10
8秒前
ENH发布了新的文献求助10
8秒前
在水一方应助Riggle G采纳,获得10
8秒前
量子星尘发布了新的文献求助10
8秒前
烟花应助Unfair采纳,获得10
9秒前
9秒前
10秒前
10秒前
香蕉觅云应助凌灵翎采纳,获得10
10秒前
11秒前
11秒前
思源应助xiaoyu采纳,获得10
11秒前
HHF发布了新的文献求助30
11秒前
xiaobai完成签到,获得积分10
11秒前
12秒前
天天快乐关注了科研通微信公众号
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1200
Holistic Discourse Analysis 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
Using Genomics to Understand How Invaders May Adapt: A Marine Perspective 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5505852
求助须知:如何正确求助?哪些是违规求助? 4601404
关于积分的说明 14476173
捐赠科研通 4535332
什么是DOI,文献DOI怎么找? 2485305
邀请新用户注册赠送积分活动 1468307
关于科研通互助平台的介绍 1440779