Boosting capacitive deionization of monovalent and hardness ions using Ti3C2Tx MXene as an intercalation-type pseudocapacitive electrode

电容去离子 材料科学 化学工程 电化学 插层(化学) 电极 吸附 电容 离子 超级电容器 纳米技术 无机化学 化学 工程类 物理化学 有机化学
作者
Thi Kim Anh Nguyen,Nguyễn Thị Ngọc Ánh,Manh Dung Nguyen,Văn Thành Nguyễn,Ruey‐an Doong
出处
期刊:Separation and Purification Technology [Elsevier]
卷期号:327: 124934-124934 被引量:3
标识
DOI:10.1016/j.seppur.2023.124934
摘要

MXene is a promising electrode material for energy storage and capacitive deionization (CDI) applications. In this study, a viable approach was developed to synthesize Ti3C2Tx at different LiF/Ti3AlC2 mass ratios of 0.5 – 2.0 for the enhanced CDI to remove different cations including hardness (Mg2+ and Ca2+), salt (Na+), and ammonium (NH4+) ions. The Ti3C2Tx was fabricated using the hydrothermal method in the presence of LiF and HCl. The optimal mass ratio of 1.0 results in the formation of hydrophilic and well-delaminated nanosheets. Moreover, the Ti3C2Tx-1 shows an interconnected meso-macroporous structure with a specific surface area of 48.4 m2/g. The Ti3C2Tx MXene exhibits an exceptional electrochemical performance with a specific capacitance of 540 F g−1 at 5 mV s−1 in the presence of 1 M H2SO4. A remarkable desalination performance with the salt adsorption capacity (SAC) of 39.7 mg g−1 is obtained. The well-suited lattice fringe and inter-connected porous structure of the Ti3C2Tx nanosheets accelerate the electron transport, which can maintain the cyclability over 50 cycles. This enhanced electron transport leads to an improved deionization capability during the CDI process. Moreover, the Ti3C2Tx-based CDI device exhibits prominent selectivity for hardness ions with SACs of 43.8 and 39.5 mg g−1 for Ca2+ and Mg2+, respectively. The SAC of NH4+ can also be up of 39.7 mg g−1 at 1000 mg L−1. Results in this study clearly elaborate the promising potentiality for the utilization of MXene as an effective electrode material for desalination and other electrochemical applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
bewh发布了新的文献求助10
5秒前
5秒前
hins完成签到,获得积分10
5秒前
7秒前
爆米花应助科研通管家采纳,获得10
8秒前
科研通AI2S应助科研通管家采纳,获得30
8秒前
YCL应助科研通管家采纳,获得10
8秒前
隐形曼青应助科研通管家采纳,获得10
8秒前
英俊的铭应助科研通管家采纳,获得10
8秒前
8秒前
小二郎应助科研通管家采纳,获得10
8秒前
乐乐应助科研通管家采纳,获得10
8秒前
大模型应助科研通管家采纳,获得30
8秒前
科研通AI2S应助科研通管家采纳,获得10
8秒前
深情安青应助科研通管家采纳,获得10
8秒前
Jasper应助科研通管家采纳,获得10
8秒前
bkagyin应助科研通管家采纳,获得10
9秒前
9秒前
清澈水眸发布了新的文献求助10
12秒前
杨晓白完成签到,获得积分10
14秒前
共享精神应助斯文火龙果采纳,获得10
16秒前
小蘑菇应助毕蓝血采纳,获得10
16秒前
Able完成签到,获得积分10
16秒前
17秒前
Ccccn完成签到,获得积分10
17秒前
19秒前
斯文败类应助逢投必中采纳,获得10
19秒前
iNk应助Harlotte采纳,获得20
19秒前
CipherSage应助清澈水眸采纳,获得10
21秒前
23秒前
24秒前
25秒前
英姑应助蛋壳柯采纳,获得10
26秒前
领导范儿应助Nugget采纳,获得10
27秒前
科研通AI2S应助芊慧采纳,获得10
28秒前
清逸发布了新的文献求助10
30秒前
30秒前
小熊炸毛发布了新的文献求助10
31秒前
31秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger Heßler, Claudia, Rud 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 1000
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
How Maoism Was Made: Reconstructing China, 1949-1965 800
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 量子力学 冶金 电极
热门帖子
关注 科研通微信公众号,转发送积分 3316718
求助须知:如何正确求助?哪些是违规求助? 2948488
关于积分的说明 8540905
捐赠科研通 2624376
什么是DOI,文献DOI怎么找? 1436143
科研通“疑难数据库(出版商)”最低求助积分说明 665796
邀请新用户注册赠送积分活动 651724