亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Cross-domain bearing fault diagnosis method based on SMOTENC and deep transfer learning under imbalanced data

方位(导航) 断层(地质) 计算机科学 学习迁移 深度学习 人工智能 人工神经网络 采样(信号处理) 传递函数 模式识别(心理学) 公制(单位) 数据挖掘 机器学习 算法 计算机视觉 工程类 地震学 地质学 电气工程 滤波器(信号处理) 运营管理
作者
Yupeng Jin,Junfeng Yang,Yang Xu,Zhongchao Liu
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:35 (1): 015121-015121 被引量:4
标识
DOI:10.1088/1361-6501/ad016a
摘要

Abstract The issue of cross-device fault diagnosis is a focal point in bearing fault diagnosis. Nevertheless, due to the imbalance in bearing fault data, conventional fault diagnosis methods have certain limitations in practical applications. To overcome this problem, this paper proposes a bearing fault diagnosis method based on synthetic minority over-sampling technique for nominal and continuous (SMOTENC) and deep transfer learning. Firstly, the SMOTENC algorithm is employed to oversample the imbalanced bearing vibration signals, thereby obtaining a balanced dataset. Secondly, a six-layer deep transfer neural network model is constructed, and a novel conditional distribution metric loss function is utilized to minimize the distance between the source and target domains. Lastly, the proposed method is applied to 12 cross-device bearing fault diagnosis tasks under an imbalanced dataset, and validated using three performance metrics. The research findings demonstrate that the bearing fault diagnosis method based on SMOTENC and deep transfer learning exhibits significant advantages in handling imbalanced data, offering an effective solution for research in the field of bearing fault diagnosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
sinan发布了新的文献求助10
32秒前
sinan完成签到,获得积分20
45秒前
科研通AI2S应助科研通管家采纳,获得10
45秒前
46秒前
悄悄拔尖儿完成签到 ,获得积分10
50秒前
52秒前
59秒前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
2分钟前
jennie完成签到 ,获得积分10
2分钟前
2分钟前
艾米发布了新的文献求助10
2分钟前
2分钟前
sycsyc完成签到,获得积分10
2分钟前
轻松的惜芹应助艾米采纳,获得10
2分钟前
轻松的惜芹应助艾米采纳,获得10
2分钟前
2分钟前
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
2分钟前
3分钟前
guoze完成签到,获得积分10
3分钟前
3分钟前
田様应助执着的草丛采纳,获得10
3分钟前
3分钟前
量子星尘发布了新的文献求助10
4分钟前
4分钟前
哈尔滨发布了新的文献求助10
4分钟前
4分钟前
4分钟前
伯赏元彤发布了新的文献求助10
4分钟前
4分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
CodeCraft应助科研通管家采纳,获得10
4分钟前
4分钟前
4分钟前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3976665
求助须知:如何正确求助?哪些是违规求助? 3520756
关于积分的说明 11204771
捐赠科研通 3257528
什么是DOI,文献DOI怎么找? 1798733
邀请新用户注册赠送积分活动 877897
科研通“疑难数据库(出版商)”最低求助积分说明 806629