Improved Gaussian mixture model to map the flooded crops of VV and VH polarization data

合成孔径雷达 遥感 混合模型 环境科学 概率逻辑 计算机科学 天蓬 人工智能 地质学 地理 考古
作者
Haixiang Guan,Jianxi Huang,Li Li,Xuecao Li,Shuangxi Miao,Wei Su,Yuyang Ma,Quandi Niu,Hai Huang
出处
期刊:Remote Sensing of Environment [Elsevier]
卷期号:295: 113714-113714 被引量:84
标识
DOI:10.1016/j.rse.2023.113714
摘要

Accurate and timely monitoring of flooded crop areas is crucial for disaster rescue and loss assessment. However, most flooded crop monitoring methods based on synthetic aperture radar (SAR) imagery were developed for rice, which is probably inappropriate for crops with complex canopy structures that strongly attenuate SAR signals. Additionally, these methods often rely on empirical thresholds and region-specific reference samples, limiting their reliability and applicability on a larger spatial scale. To address these issues, we developed a novel flooded crop mapping approach at a regional scale using Sentinel-1 time-series data and an unsupervised Gaussian Mixture Model (GMM). Our approach leverages a Flood Separability Index (FSI) derived from the fitted probability density function of flooded and non-flooded crop areas in a GMM. This allows us to overcome the limitations of manual input selection in previous studies. The multi-temporal GMM was constructed using the time-series images with optimal polarization to estimate the flooded crop extents on a regional scale. We also investigated the scattering mechanisms of three typical crop disaster structures within an agricultural landscape area. Our results indicate that the proposed multi-temporal GMM is robust in crop planting areas with complex canopy structures. The performance of both single-temporal and multi-temporal GMMs surpasses that of baseline methods such as Otsu and K-means. Compared with VV polarization, VH polarization exhibits greater potential for accurately mapping flooded crops in complex agricultural regions. Our approach does not require labeled samples or many predefined parameters, making it fast and feasible for mapping flooded crops with complex canopy structures in large spatial areas.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
GXLong发布了新的文献求助30
1秒前
天真幻珊完成签到 ,获得积分10
3秒前
量子星尘发布了新的文献求助30
5秒前
食梦貊完成签到 ,获得积分10
6秒前
sadh2完成签到 ,获得积分10
9秒前
GXLong完成签到,获得积分10
9秒前
chichenglin完成签到 ,获得积分0
10秒前
久ling完成签到 ,获得积分10
14秒前
量子星尘发布了新的文献求助30
23秒前
好吃的番茄芝士完成签到 ,获得积分10
33秒前
量子星尘发布了新的文献求助10
34秒前
i2stay完成签到,获得积分0
41秒前
科研通AI6.1应助wake采纳,获得10
43秒前
43秒前
村上春树的摩的完成签到 ,获得积分10
44秒前
葉鳳怡完成签到 ,获得积分10
59秒前
量子星尘发布了新的文献求助10
1分钟前
LOST完成签到 ,获得积分10
1分钟前
onevip完成签到,获得积分0
1分钟前
11完成签到 ,获得积分10
1分钟前
1分钟前
窖藏喜之郎完成签到 ,获得积分10
1分钟前
萝卜青菜完成签到 ,获得积分10
1分钟前
潇潇完成签到,获得积分10
1分钟前
量子星尘发布了新的文献求助50
1分钟前
1分钟前
魔仙堡狸花猫完成签到 ,获得积分10
1分钟前
xiaoyi完成签到 ,获得积分10
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
完美世界应助科研通管家采纳,获得10
1分钟前
好好应助科研通管家采纳,获得10
1分钟前
完美世界应助科研通管家采纳,获得10
1分钟前
1分钟前
好好应助科研通管家采纳,获得10
1分钟前
传奇3应助科研通管家采纳,获得10
1分钟前
1分钟前
上官若男应助科研通管家采纳,获得10
1分钟前
传奇3应助科研通管家采纳,获得10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Electron Energy Loss Spectroscopy 1500
Tip-in balloon grenadoplasty for uncrossable chronic total occlusions 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5789350
求助须知:如何正确求助?哪些是违规求助? 5718543
关于积分的说明 15474497
捐赠科研通 4917193
什么是DOI,文献DOI怎么找? 2646821
邀请新用户注册赠送积分活动 1594488
关于科研通互助平台的介绍 1548966