亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Improved Gaussian mixture model to map the flooded crops of VV and VH polarization data

合成孔径雷达 遥感 混合模型 环境科学 概率逻辑 计算机科学 天蓬 人工智能 地质学 地理 考古
作者
Haixiang Guan,Jianxi Huang,Li Li,Xuecao Li,Shuangxi Miao,Wei Su,Yuyang Ma,Quandi Niu,Hai Huang
出处
期刊:Remote Sensing of Environment [Elsevier]
卷期号:295: 113714-113714 被引量:84
标识
DOI:10.1016/j.rse.2023.113714
摘要

Accurate and timely monitoring of flooded crop areas is crucial for disaster rescue and loss assessment. However, most flooded crop monitoring methods based on synthetic aperture radar (SAR) imagery were developed for rice, which is probably inappropriate for crops with complex canopy structures that strongly attenuate SAR signals. Additionally, these methods often rely on empirical thresholds and region-specific reference samples, limiting their reliability and applicability on a larger spatial scale. To address these issues, we developed a novel flooded crop mapping approach at a regional scale using Sentinel-1 time-series data and an unsupervised Gaussian Mixture Model (GMM). Our approach leverages a Flood Separability Index (FSI) derived from the fitted probability density function of flooded and non-flooded crop areas in a GMM. This allows us to overcome the limitations of manual input selection in previous studies. The multi-temporal GMM was constructed using the time-series images with optimal polarization to estimate the flooded crop extents on a regional scale. We also investigated the scattering mechanisms of three typical crop disaster structures within an agricultural landscape area. Our results indicate that the proposed multi-temporal GMM is robust in crop planting areas with complex canopy structures. The performance of both single-temporal and multi-temporal GMMs surpasses that of baseline methods such as Otsu and K-means. Compared with VV polarization, VH polarization exhibits greater potential for accurately mapping flooded crops in complex agricultural regions. Our approach does not require labeled samples or many predefined parameters, making it fast and feasible for mapping flooded crops with complex canopy structures in large spatial areas.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大模型应助jing采纳,获得10
16秒前
19秒前
奋斗一刀完成签到,获得积分20
34秒前
40秒前
44秒前
jing发布了新的文献求助10
45秒前
46秒前
49秒前
53秒前
火星上的幻梦完成签到,获得积分10
1分钟前
zyjsunye完成签到 ,获得积分10
1分钟前
一一完成签到,获得积分10
1分钟前
jing完成签到,获得积分20
1分钟前
充电宝应助科研通管家采纳,获得10
1分钟前
星辰大海应助科研通管家采纳,获得10
1分钟前
诚心雪晴完成签到 ,获得积分10
1分钟前
Owen应助Re采纳,获得10
2分钟前
2分钟前
Re发布了新的文献求助10
2分钟前
量子星尘发布了新的文献求助10
3分钟前
su完成签到 ,获得积分10
3分钟前
阿里完成签到,获得积分10
3分钟前
阿里发布了新的文献求助30
3分钟前
3分钟前
4分钟前
pengpengyin发布了新的文献求助10
4分钟前
咔敏完成签到,获得积分10
4分钟前
咔敏发布了新的文献求助10
4分钟前
pengpengyin完成签到,获得积分10
4分钟前
5分钟前
小二郎应助七安得安采纳,获得30
5分钟前
平常囧完成签到,获得积分10
5分钟前
李健应助跳跃的小之采纳,获得10
5分钟前
5分钟前
5分钟前
火速阿百川完成签到,获得积分10
5分钟前
5分钟前
6分钟前
6分钟前
奶油蜜豆卷完成签到,获得积分10
6分钟前
高分求助中
From Victimization to Aggression 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
小学科学课程与教学 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5644822
求助须知:如何正确求助?哪些是违规求助? 4765845
关于积分的说明 15025703
捐赠科研通 4803160
什么是DOI,文献DOI怎么找? 2568064
邀请新用户注册赠送积分活动 1525521
关于科研通互助平台的介绍 1485064