亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Improved Gaussian mixture model to map the flooded crops of VV and VH polarization data

合成孔径雷达 遥感 混合模型 环境科学 概率逻辑 计算机科学 天蓬 人工智能 地质学 地理 考古
作者
Haixiang Guan,Jianxi Huang,Li Li,Xuecao Li,Shuangxi Miao,Wei Su,Yuyang Ma,Quandi Niu,Hai Huang
出处
期刊:Remote Sensing of Environment [Elsevier]
卷期号:295: 113714-113714 被引量:84
标识
DOI:10.1016/j.rse.2023.113714
摘要

Accurate and timely monitoring of flooded crop areas is crucial for disaster rescue and loss assessment. However, most flooded crop monitoring methods based on synthetic aperture radar (SAR) imagery were developed for rice, which is probably inappropriate for crops with complex canopy structures that strongly attenuate SAR signals. Additionally, these methods often rely on empirical thresholds and region-specific reference samples, limiting their reliability and applicability on a larger spatial scale. To address these issues, we developed a novel flooded crop mapping approach at a regional scale using Sentinel-1 time-series data and an unsupervised Gaussian Mixture Model (GMM). Our approach leverages a Flood Separability Index (FSI) derived from the fitted probability density function of flooded and non-flooded crop areas in a GMM. This allows us to overcome the limitations of manual input selection in previous studies. The multi-temporal GMM was constructed using the time-series images with optimal polarization to estimate the flooded crop extents on a regional scale. We also investigated the scattering mechanisms of three typical crop disaster structures within an agricultural landscape area. Our results indicate that the proposed multi-temporal GMM is robust in crop planting areas with complex canopy structures. The performance of both single-temporal and multi-temporal GMMs surpasses that of baseline methods such as Otsu and K-means. Compared with VV polarization, VH polarization exhibits greater potential for accurately mapping flooded crops in complex agricultural regions. Our approach does not require labeled samples or many predefined parameters, making it fast and feasible for mapping flooded crops with complex canopy structures in large spatial areas.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助科研通管家采纳,获得10
4秒前
脑洞疼应助米兰的小铁匠采纳,获得10
9秒前
37秒前
57秒前
1分钟前
1分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
2分钟前
gszy1975完成签到,获得积分10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
SciGPT应助务实的犀牛采纳,获得10
3分钟前
冉亦完成签到,获得积分10
3分钟前
4分钟前
yhw发布了新的文献求助10
4分钟前
Jay完成签到,获得积分10
4分钟前
空里叽哇完成签到,获得积分10
5分钟前
Hello应助杨杨采纳,获得10
5分钟前
5分钟前
5分钟前
6分钟前
杨杨完成签到,获得积分20
6分钟前
犹豫绾绾完成签到 ,获得积分10
6分钟前
香蕉觅云应助科研通管家采纳,获得10
6分钟前
光能使者完成签到 ,获得积分10
6分钟前
杨杨发布了新的文献求助10
6分钟前
guozizi应助阿米尔盼盼采纳,获得100
6分钟前
浮游应助阿米尔盼盼采纳,获得10
6分钟前
烟花应助阿米尔盼盼采纳,获得10
6分钟前
打打应助科研通管家采纳,获得30
8分钟前
领导范儿应助科研通管家采纳,获得10
8分钟前
9分钟前
科研通AI2S应助科研通管家采纳,获得10
10分钟前
10分钟前
研友_89Nm7L发布了新的文献求助10
10分钟前
10分钟前
wrl2023完成签到,获得积分10
10分钟前
研友_89Nm7L完成签到,获得积分10
10分钟前
10分钟前
11分钟前
发呆员发布了新的文献求助100
11分钟前
高分求助中
Encyclopedia of Immunobiology Second Edition 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5584704
求助须知:如何正确求助?哪些是违规求助? 4668640
关于积分的说明 14771517
捐赠科研通 4613414
什么是DOI,文献DOI怎么找? 2530181
邀请新用户注册赠送积分活动 1499072
关于科研通互助平台的介绍 1467516