Improved Gaussian mixture model to map the flooded crops of VV and VH polarization data

合成孔径雷达 遥感 混合模型 环境科学 概率逻辑 计算机科学 天蓬 人工智能 地质学 地理 考古
作者
Haixiang Guan,Jianxi Huang,Li Li,Xuecao Li,Shuangxi Miao,Wei Su,Yuyang Ma,Quandi Niu,Hai Huang
出处
期刊:Remote Sensing of Environment [Elsevier]
卷期号:295: 113714-113714 被引量:84
标识
DOI:10.1016/j.rse.2023.113714
摘要

Accurate and timely monitoring of flooded crop areas is crucial for disaster rescue and loss assessment. However, most flooded crop monitoring methods based on synthetic aperture radar (SAR) imagery were developed for rice, which is probably inappropriate for crops with complex canopy structures that strongly attenuate SAR signals. Additionally, these methods often rely on empirical thresholds and region-specific reference samples, limiting their reliability and applicability on a larger spatial scale. To address these issues, we developed a novel flooded crop mapping approach at a regional scale using Sentinel-1 time-series data and an unsupervised Gaussian Mixture Model (GMM). Our approach leverages a Flood Separability Index (FSI) derived from the fitted probability density function of flooded and non-flooded crop areas in a GMM. This allows us to overcome the limitations of manual input selection in previous studies. The multi-temporal GMM was constructed using the time-series images with optimal polarization to estimate the flooded crop extents on a regional scale. We also investigated the scattering mechanisms of three typical crop disaster structures within an agricultural landscape area. Our results indicate that the proposed multi-temporal GMM is robust in crop planting areas with complex canopy structures. The performance of both single-temporal and multi-temporal GMMs surpasses that of baseline methods such as Otsu and K-means. Compared with VV polarization, VH polarization exhibits greater potential for accurately mapping flooded crops in complex agricultural regions. Our approach does not require labeled samples or many predefined parameters, making it fast and feasible for mapping flooded crops with complex canopy structures in large spatial areas.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
刚刚
2秒前
罗大海完成签到,获得积分10
3秒前
平常完成签到,获得积分10
3秒前
画船听雨眠完成签到,获得积分10
3秒前
梧wu完成签到,获得积分20
4秒前
XHY123发布了新的文献求助10
5秒前
5秒前
6秒前
Hello应助永曼采纳,获得10
6秒前
科研汪发布了新的文献求助10
6秒前
慕青应助chenjie采纳,获得10
6秒前
XJY发布了新的文献求助20
7秒前
7秒前
7秒前
懒大王应助皮卡丘采纳,获得10
8秒前
9秒前
9秒前
Owen应助小唐采纳,获得10
9秒前
9秒前
可靠若云发布了新的文献求助10
9秒前
guo发布了新的文献求助10
10秒前
12秒前
orixero应助梧wu采纳,获得10
12秒前
lyx发布了新的文献求助10
13秒前
bkagyin应助小迪采纳,获得10
13秒前
qianqiu发布了新的文献求助10
14秒前
14秒前
14秒前
科研通AI6应助鲜艳的亿先采纳,获得30
15秒前
科研通AI6应助乔木采纳,获得10
16秒前
jazzmantan发布了新的文献求助10
16秒前
spzdss发布了新的文献求助20
16秒前
lingzi1015完成签到,获得积分10
17秒前
17秒前
量子星尘发布了新的文献求助10
17秒前
18秒前
gis_xu发布了新的文献求助10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
按地区划分的1,091个公共养老金档案列表 801
The International Law of the Sea (fourth edition) 800
Teacher Wellbeing: A Real Conversation for Teachers and Leaders 600
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5406795
求助须知:如何正确求助?哪些是违规求助? 4524516
关于积分的说明 14098938
捐赠科研通 4438379
什么是DOI,文献DOI怎么找? 2436217
邀请新用户注册赠送积分活动 1428245
关于科研通互助平台的介绍 1406340