已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Improved Gaussian mixture model to map the flooded crops of VV and VH polarization data

合成孔径雷达 遥感 混合模型 环境科学 概率逻辑 计算机科学 天蓬 人工智能 地质学 地理 考古
作者
Haixiang Guan,Jianxi Huang,Li Li,Xuecao Li,Shuangxi Miao,Wei Su,Yuyang Ma,Quandi Niu,Hai Huang
出处
期刊:Remote Sensing of Environment [Elsevier BV]
卷期号:295: 113714-113714 被引量:7
标识
DOI:10.1016/j.rse.2023.113714
摘要

Accurate and timely monitoring of flooded crop areas is crucial for disaster rescue and loss assessment. However, most flooded crop monitoring methods based on synthetic aperture radar (SAR) imagery were developed for rice, which is probably inappropriate for crops with complex canopy structures that strongly attenuate SAR signals. Additionally, these methods often rely on empirical thresholds and region-specific reference samples, limiting their reliability and applicability on a larger spatial scale. To address these issues, we developed a novel flooded crop mapping approach at a regional scale using Sentinel-1 time-series data and an unsupervised Gaussian Mixture Model (GMM). Our approach leverages a Flood Separability Index (FSI) derived from the fitted probability density function of flooded and non-flooded crop areas in a GMM. This allows us to overcome the limitations of manual input selection in previous studies. The multi-temporal GMM was constructed using the time-series images with optimal polarization to estimate the flooded crop extents on a regional scale. We also investigated the scattering mechanisms of three typical crop disaster structures within an agricultural landscape area. Our results indicate that the proposed multi-temporal GMM is robust in crop planting areas with complex canopy structures. The performance of both single-temporal and multi-temporal GMMs surpasses that of baseline methods such as Otsu and K-means. Compared with VV polarization, VH polarization exhibits greater potential for accurately mapping flooded crops in complex agricultural regions. Our approach does not require labeled samples or many predefined parameters, making it fast and feasible for mapping flooded crops with complex canopy structures in large spatial areas.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ying发布了新的文献求助10
2秒前
福娃哇完成签到 ,获得积分10
3秒前
CodeCraft应助Shane采纳,获得10
4秒前
天真之桃完成签到,获得积分10
6秒前
8秒前
柏小霜完成签到 ,获得积分0
10秒前
乳酸菌小面包完成签到,获得积分10
12秒前
12秒前
zhangdamiao发布了新的文献求助10
13秒前
lyp完成签到 ,获得积分10
14秒前
今年发大财完成签到,获得积分10
15秒前
土豪的灵竹完成签到 ,获得积分10
15秒前
ttt发布了新的文献求助10
18秒前
20秒前
小老虎喵喵喵完成签到 ,获得积分10
23秒前
小詹发布了新的文献求助10
24秒前
贪玩小小完成签到 ,获得积分10
25秒前
25秒前
等等完成签到 ,获得积分10
25秒前
zuzu发布了新的文献求助10
30秒前
肉肉完成签到 ,获得积分10
33秒前
坚强的雯完成签到 ,获得积分10
34秒前
自信松思完成签到 ,获得积分10
36秒前
居崽完成签到 ,获得积分10
36秒前
昵称完成签到,获得积分10
39秒前
rodrisk完成签到 ,获得积分10
40秒前
Liangyong_Fu完成签到 ,获得积分10
40秒前
是真灵还是机灵完成签到 ,获得积分10
42秒前
gxl完成签到,获得积分10
43秒前
小詹完成签到,获得积分10
47秒前
inches完成签到 ,获得积分10
47秒前
yu完成签到 ,获得积分10
50秒前
51秒前
陶醉的烤鸡完成签到 ,获得积分10
52秒前
impending完成签到,获得积分10
52秒前
11111完成签到 ,获得积分10
52秒前
So完成签到 ,获得积分10
52秒前
54秒前
君知完成签到,获得积分10
54秒前
老迟到的梦旋完成签到 ,获得积分10
56秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3965466
求助须知:如何正确求助?哪些是违规求助? 3510780
关于积分的说明 11155030
捐赠科研通 3245229
什么是DOI,文献DOI怎么找? 1792783
邀请新用户注册赠送积分活动 874088
科研通“疑难数据库(出版商)”最低求助积分说明 804171