Improved Gaussian mixture model to map the flooded crops of VV and VH polarization data

合成孔径雷达 遥感 混合模型 环境科学 概率逻辑 计算机科学 天蓬 人工智能 地质学 地理 考古
作者
Haixiang Guan,Jianxi Huang,Li Li,Xuecao Li,Shuangxi Miao,Wei Su,Yuyang Ma,Quandi Niu,Hai Huang
出处
期刊:Remote Sensing of Environment [Elsevier]
卷期号:295: 113714-113714 被引量:84
标识
DOI:10.1016/j.rse.2023.113714
摘要

Accurate and timely monitoring of flooded crop areas is crucial for disaster rescue and loss assessment. However, most flooded crop monitoring methods based on synthetic aperture radar (SAR) imagery were developed for rice, which is probably inappropriate for crops with complex canopy structures that strongly attenuate SAR signals. Additionally, these methods often rely on empirical thresholds and region-specific reference samples, limiting their reliability and applicability on a larger spatial scale. To address these issues, we developed a novel flooded crop mapping approach at a regional scale using Sentinel-1 time-series data and an unsupervised Gaussian Mixture Model (GMM). Our approach leverages a Flood Separability Index (FSI) derived from the fitted probability density function of flooded and non-flooded crop areas in a GMM. This allows us to overcome the limitations of manual input selection in previous studies. The multi-temporal GMM was constructed using the time-series images with optimal polarization to estimate the flooded crop extents on a regional scale. We also investigated the scattering mechanisms of three typical crop disaster structures within an agricultural landscape area. Our results indicate that the proposed multi-temporal GMM is robust in crop planting areas with complex canopy structures. The performance of both single-temporal and multi-temporal GMMs surpasses that of baseline methods such as Otsu and K-means. Compared with VV polarization, VH polarization exhibits greater potential for accurately mapping flooded crops in complex agricultural regions. Our approach does not require labeled samples or many predefined parameters, making it fast and feasible for mapping flooded crops with complex canopy structures in large spatial areas.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
jkhjkhj完成签到,获得积分10
刚刚
ttt发布了新的文献求助10
1秒前
Maydalian完成签到,获得积分10
1秒前
熊猫盖浇饭完成签到,获得积分10
2秒前
松鼠15111完成签到,获得积分10
2秒前
快乐的幼丝完成签到 ,获得积分10
2秒前
2秒前
求知小生完成签到 ,获得积分10
2秒前
3秒前
真圆完成签到 ,获得积分10
3秒前
3秒前
满意青曼完成签到,获得积分10
4秒前
4秒前
zhaolihua发布了新的文献求助10
5秒前
sunshine完成签到 ,获得积分10
5秒前
5秒前
寻道图强应助虞无声采纳,获得80
6秒前
江城完成签到,获得积分10
6秒前
坚定的小蘑菇完成签到 ,获得积分10
6秒前
6秒前
积极钧发布了新的文献求助30
7秒前
小广完成签到,获得积分0
8秒前
友好的鼠标完成签到 ,获得积分10
8秒前
热心芷雪发布了新的文献求助10
9秒前
nzxnzx发布了新的文献求助10
9秒前
Wdd完成签到,获得积分10
10秒前
10秒前
陈亚茹完成签到,获得积分10
10秒前
暖暖完成签到 ,获得积分10
11秒前
CXSCXD完成签到,获得积分10
11秒前
Orange应助啊哈采纳,获得10
11秒前
李李完成签到,获得积分10
11秒前
隐形晓兰完成签到,获得积分10
11秒前
闪闪航空完成签到,获得积分10
11秒前
uiuu完成签到,获得积分10
11秒前
drbrianlau完成签到,获得积分10
11秒前
吐个泡泡完成签到 ,获得积分10
12秒前
完美怜菡发布了新的文献求助10
12秒前
孟雯毓完成签到,获得积分10
12秒前
英姑应助灵巧一笑采纳,获得10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
Theories in Second Language Acquisition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5568403
求助须知:如何正确求助?哪些是违规求助? 4652961
关于积分的说明 14702698
捐赠科研通 4594773
什么是DOI,文献DOI怎么找? 2521254
邀请新用户注册赠送积分活动 1492932
关于科研通互助平台的介绍 1463735