Review of vision-based defect detection research and its perspectives for printed circuit board

印刷电路板 机器视觉 目视检查 可靠性 人工智能 过程(计算) 自动光学检测 计算机科学 特征(语言学) 工程类 质量(理念) 国家(计算机科学) 工程制图 可靠性工程 电气工程 哲学 操作系统 认识论 语言学 算法
作者
Yongbing Zhou,Minghao Yuan,Jian Zhang,Guofu Ding,Shengfeng Qin
出处
期刊:Journal of Manufacturing Systems [Elsevier BV]
卷期号:70: 557-578 被引量:51
标识
DOI:10.1016/j.jmsy.2023.08.019
摘要

The quality of the printed circuit board (PCB), an essential critical connection in contemporary electronic information goods, directly influences the efficiency and dependability of products. Therefore, any PCB defect should be identified promptly and precisely to avoid a product failure while it is in use. Numerous innovative methods based on machine vision, including automatic X-ray inspection (AXI), two-dimensional automated optical inspection (2D AOI), three-dimensional automated optical inspection (3D AOI), etc., are developed and used widely in PCB defect identification. Given the rapid research development in both image and vision computing and machine learning, two research questions are rising to us: (1) what is the current state-of-the-art in this research field? (2) what are the future research and development directions? To answer these two questions, this paper first systematically reviews the PCB visual detection methods and then explores the potential development trends. Firstly, we review and summarize the state of the art in research of the image data acquisition, image processing, feature extraction and feature recognition/classification methods for PCB defect detection, and then identify the commonly used method evaluation indicators and public data sets, and the execution feedback and optimization process from both visual inspection system and manufacturing system. Third, we identify the current challenges in PCB defect detection research and propose an intelligent PCB defect visual detection approach as a future potential development trend. Finally, how to implement the future potential development trend based on technology-driven and value-driven developments is discussed for intelligent manufacturing.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
顾矜应助甜心采纳,获得10
1秒前
光电完成签到,获得积分10
1秒前
1秒前
boymin2015发布了新的文献求助10
1秒前
li完成签到,获得积分10
1秒前
2秒前
田様应助eleven采纳,获得10
2秒前
hileborn完成签到,获得积分10
3秒前
bkagyin应助谦让的西装采纳,获得10
4秒前
hansfish发布了新的文献求助10
4秒前
wp发布了新的文献求助10
5秒前
5秒前
6秒前
6秒前
6秒前
6秒前
YY发布了新的文献求助10
6秒前
7秒前
you完成签到,获得积分10
7秒前
毛八帝丶完成签到,获得积分10
7秒前
imomoe完成签到,获得积分10
7秒前
8秒前
英姑应助SK采纳,获得10
8秒前
xyjuaN完成签到 ,获得积分10
9秒前
彭于晏应助勤劳影子采纳,获得10
9秒前
9秒前
完美世界应助chen采纳,获得20
9秒前
汉堡包应助自觉石头采纳,获得10
10秒前
dummy发布了新的文献求助10
11秒前
yhx完成签到,获得积分10
11秒前
11秒前
慕青应助S179采纳,获得10
11秒前
xyx发布了新的文献求助10
11秒前
为神武完成签到,获得积分10
11秒前
11秒前
情怀应助研友_Z345g8采纳,获得10
12秒前
Singularity发布了新的文献求助10
12秒前
13秒前
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 2000
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
Starvation biology of Plutella xylostella from a post-harvest crop sanitation perspective 250
A method for calculating the flow in a centrifugal impeller when entropy gradients are present 240
Essays on Employer Engagement in Education 210
University-Industry Collaboration and the Success Mechanism of Collaboration 210
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3690543
求助须知:如何正确求助?哪些是违规求助? 3240580
关于积分的说明 9839379
捐赠科研通 2952344
什么是DOI,文献DOI怎么找? 1618644
邀请新用户注册赠送积分活动 765322
科研通“疑难数据库(出版商)”最低求助积分说明 739190