ConvLSTM coordinated longitudinal transformer under spatio-temporal features for tumor growth prediction

计算机科学 人工智能 模式识别(心理学) 变压器 电压 量子力学 物理
作者
Manfu Ma,Xiaoming Zhang,Yong Li,Xia Wang,Ruigen Zhang,Yan Wang,Penghui Sun,Xuegang Wang,Xuan Sun
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:164: 107313-107313 被引量:2
标识
DOI:10.1016/j.compbiomed.2023.107313
摘要

Accurate quantification of tumor growth patterns can indicate the development process of the disease. According to the important features of tumor growth rate and expansion, physicians can intervene and diagnose patients more efficiently to improve the cure rate. However, the existing longitudinal growth model can not well analyze the dependence between tumor growth pixels in the long space-time, and fail to effectively fit the nonlinear growth law of tumors. So, we propose the ConvLSTM coordinated longitudinal Transformer (LCTformer) under spatiotemporal features for tumor growth prediction. We design the Adaptive Edge Enhancement Module (AEEM) to learn static spatial features of different size tumors under time series and make the depth model more focused on tumor edge regions. In addition, we propose the Growth Prediction Module (GPM) to characterize the future growth trend of tumors. It consists of a Longitudinal Transformer and ConvLSTM. Based on the adaptive abstract features of current tumors, Longitudinal Transformer explores the dynamic growth patterns between spatiotemporal CT sequences and learns the future morphological features of tumors under the dual views of residual information and sequence motion relationship in parallel. ConvLSTM can better learn the location information of target tumors, and it complements Longitudinal Transformer to jointly predict future imaging of tumors to reduce the loss of growth information. Finally, Channel Enhancement Fusion Module (CEFM) performs the dense fusion of the generated tumor feature images in the channel and spatial dimensions and realizes accurate quantification of the whole tumor growth process. Our model has been strictly trained and tested on the NLST dataset. The average prediction accuracy can reach 88.52% (Dice score), 89.64% (Recall), and 11.06 (RMSE), which can improve the work efficiency of doctors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
青尘如墨发布了新的文献求助10
刚刚
lqphysics完成签到,获得积分10
刚刚
小怪兽完成签到,获得积分10
1秒前
妮子留下了新的社区评论
6秒前
完美世界应助ZL采纳,获得10
10秒前
三虎科研完成签到,获得积分10
11秒前
芝麻士完成签到,获得积分10
16秒前
王小嘻发布了新的文献求助10
16秒前
17秒前
Ava应助仲达采纳,获得10
19秒前
21秒前
djbj2022发布了新的文献求助30
22秒前
22秒前
Owen应助青尘如墨采纳,获得10
22秒前
芝麻士发布了新的文献求助10
22秒前
半柚应助阿信采纳,获得10
25秒前
ZL发布了新的文献求助10
26秒前
fdhineodobh花开富贵完成签到,获得积分10
34秒前
37秒前
缥缈的语雪完成签到 ,获得积分10
40秒前
42秒前
42秒前
小二郎应助科研通管家采纳,获得10
42秒前
42秒前
42秒前
43秒前
Xiaoqi完成签到 ,获得积分10
46秒前
QWE完成签到 ,获得积分10
47秒前
53秒前
jhanfglin完成签到,获得积分10
56秒前
59秒前
完美惜寒完成签到,获得积分10
59秒前
阿司匹林发布了新的文献求助10
59秒前
大模型应助细腻的语芙采纳,获得10
59秒前
59秒前
CICI发布了新的文献求助10
1分钟前
45度人发布了新的文献求助10
1分钟前
1分钟前
青尘如墨发布了新的文献求助10
1分钟前
1分钟前
高分求助中
Востребованный временем 2500
The Restraining Hand: Captivity for Christ in China 500
The Collected Works of Jeremy Bentham: Rights, Representation, and Reform: Nonsense upon Stilts and Other Writings on the French Revolution 320
Encyclopedia of Mental Health Reference Work 300
脑血管病 300
The Unity of the Common Law 300
Teaching Essential Units of Language 200
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3372153
求助须知:如何正确求助?哪些是违规求助? 2990056
关于积分的说明 8738494
捐赠科研通 2673384
什么是DOI,文献DOI怎么找? 1464426
科研通“疑难数据库(出版商)”最低求助积分说明 677527
邀请新用户注册赠送积分活动 668912