Vision and Olfactory-Based Wildfire Monitoring with Uncrewed Aircraft Systems

计算机科学 烟雾 多转子 人工智能 深度学习 计算机视觉 实时计算 遥感 环境科学 气象学 工程类 航空航天工程 物理 地质学
作者
Lingxiao Wang,Shuo Pang,Mantasha Noyela,Kevin A. Adkins,Lulu Sun,Marwa El‐Sayed
标识
DOI:10.1109/ur57808.2023.10202419
摘要

Wildfires threaten human lives, destroy facilities, and emit toxic smoke. Traditional wildfire monitoring methods are hindered by inflexibility (e.g., watch towers) and cannot provide precise geo-location of wildfires (e.g., satellites). Thanks to recent development in robotics, deploying uncrewed aircraft systems (UAS) to monitor wildfires has become a feasible solution. This article introduces a UAS-based wildfire monitoring system and implement it in a prescribed burn test. A multirotor UAS was employed as the search agent and carried both olfactory (i.e., carbon monoxide and particulate matter) and visual (i.e., a camera) sensors to detect the existence of wildfires. A fuzzy inference system is designed to fuse olfactory sensor outputs to estimate whether the UAS detects smoke. A deep learning model, i.e., You Only Look Once version 4 (YOLOv4), is employed to identify smoke from the captured images. We deployed the proposed UAS in a prescribed burn at Tallahassee, Florida, in May 2022. Experimental results show that the proposed fuzzy inference system improves the estimation accuracy of whether the UAS detects smoke compared with the fixed threshold algorithm. In addition, the proposed YOLOv4 model can also detect smoke from captured images with a small amount of training samples.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
彭于晏应助科研通管家采纳,获得10
1秒前
科研通AI2S应助科研通管家采纳,获得10
2秒前
科研通AI6应助科研通管家采纳,获得10
2秒前
思源应助科研通管家采纳,获得10
2秒前
wangxinji完成签到,获得积分10
2秒前
小青椒应助科研通管家采纳,获得200
2秒前
2秒前
ding应助科研通管家采纳,获得10
2秒前
彭于晏应助科研通管家采纳,获得10
2秒前
CYANjane应助科研通管家采纳,获得10
2秒前
NexusExplorer应助科研通管家采纳,获得10
2秒前
乐乐应助科研通管家采纳,获得10
2秒前
赘婿应助科研通管家采纳,获得10
2秒前
wanci应助科研通管家采纳,获得10
2秒前
隐形曼青应助科研通管家采纳,获得10
2秒前
所所应助科研通管家采纳,获得10
2秒前
科研通AI2S应助科研通管家采纳,获得10
2秒前
Frank应助科研通管家采纳,获得10
2秒前
ding应助科研通管家采纳,获得10
2秒前
qingmoheng应助科研通管家采纳,获得50
3秒前
斯文败类应助科研通管家采纳,获得10
3秒前
华仔应助科研通管家采纳,获得10
3秒前
wanci应助科研通管家采纳,获得10
3秒前
3秒前
搜集达人应助科研通管家采纳,获得10
3秒前
梓然完成签到,获得积分10
3秒前
科目三应助科研通管家采纳,获得10
3秒前
SciGPT应助codwest采纳,获得10
3秒前
wanci应助科研通管家采纳,获得10
3秒前
SciGPT应助科研通管家采纳,获得10
4秒前
4秒前
大模型应助科研通管家采纳,获得10
4秒前
所所应助科研通管家采纳,获得10
4秒前
酷波er应助科研通管家采纳,获得10
4秒前
我是老大应助科研通管家采纳,获得10
4秒前
4秒前
兼听则明完成签到,获得积分10
4秒前
mzhnx发布了新的文献求助10
4秒前
underoos发布了新的文献求助10
4秒前
桐桐应助科研通管家采纳,获得10
5秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5532022
求助须知:如何正确求助?哪些是违规求助? 4620823
关于积分的说明 14574972
捐赠科研通 4560552
什么是DOI,文献DOI怎么找? 2498894
邀请新用户注册赠送积分活动 1478828
关于科研通互助平台的介绍 1450125