亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

An Efficient Inference Schema for Gene Regulatory Networks using Directed Graph Neural Networks

基因调控网络 推论 计算机科学 图嵌入 图形 人工智能 理论计算机科学 计算生物学 数据挖掘 基因 生物 基因表达 遗传学
作者
Zhenyu Guo,Wanhong Zhang
标识
DOI:10.23919/ccc58697.2023.10240472
摘要

Inferring gene regulatory networks (GRNs) from gene expression data has remained the computational challenge due to the large-scale number of genes and the complexity of expression data in systems biology, which may often formulate a reconstruction problem among nodes for a topology graph. Graph neural network (GNN) is one of the most promising approaches to reconstructing a GRN by integrating topological neighbor propagation throughout a gene network. This paper proposes an end-to-end gene regulatory directed graph neural network (GRDGNN) schema to infer GRN from scratch using gene expression data in a supervised framework. Specifically, the regulatory relationship of the GRN can be first described as a graph multi-classification problem to distinguish the connection kinds between two nodes for subgraphs. Then, using gene dominant expression features and graph embedding node features, subgraphs consisting of gene node pairs and their neighbor are classified into four classes by a directed GNN model. In addition, a starting network structure constructed with noise from partial information can guide GRN inference through an appropriate integration approach. Finally, we demonstrate the ability of this method using the test data from DREAM5 challenge and the human embryonic stem cells (hESC) and human mature hepatocytes (hHep) datasets. Computational results show that the proposed method displays greater inference performance.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无花果应助lawang采纳,获得10
6秒前
打打应助lawang采纳,获得10
6秒前
充电宝应助lawang采纳,获得10
6秒前
彭于晏应助lawang采纳,获得10
6秒前
orixero应助lawang采纳,获得10
6秒前
香蕉觅云应助lawang采纳,获得10
6秒前
天天快乐应助lawang采纳,获得10
6秒前
英俊的铭应助lawang采纳,获得10
6秒前
隐形曼青应助lawang采纳,获得10
6秒前
赘婿应助lawang采纳,获得10
6秒前
17秒前
paradiselost发布了新的文献求助10
22秒前
34秒前
CipherSage应助xiuxiu125采纳,获得10
36秒前
46秒前
50秒前
54秒前
57秒前
kishk发布了新的文献求助10
59秒前
huhdcid发布了新的文献求助30
59秒前
paradiselost完成签到,获得积分20
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
FashionBoy应助huhdcid采纳,获得30
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
lawang发布了新的文献求助10
1分钟前
lawang发布了新的文献求助10
1分钟前
lawang发布了新的文献求助10
1分钟前
lawang发布了新的文献求助10
1分钟前
lawang发布了新的文献求助10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
二氧化碳加氢催化剂——结构设计与反应机制研究 660
碳中和关键技术丛书--二氧化碳加氢 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5658155
求助须知:如何正确求助?哪些是违规求助? 4817538
关于积分的说明 15080884
捐赠科研通 4816452
什么是DOI,文献DOI怎么找? 2577381
邀请新用户注册赠送积分活动 1532357
关于科研通互助平台的介绍 1490989