An Efficient Inference Schema for Gene Regulatory Networks using Directed Graph Neural Networks

基因调控网络 推论 计算机科学 图嵌入 图形 人工智能 理论计算机科学 计算生物学 数据挖掘 基因 生物 基因表达 遗传学
作者
Zhenyu Guo,Wanhong Zhang
标识
DOI:10.23919/ccc58697.2023.10240472
摘要

Inferring gene regulatory networks (GRNs) from gene expression data has remained the computational challenge due to the large-scale number of genes and the complexity of expression data in systems biology, which may often formulate a reconstruction problem among nodes for a topology graph. Graph neural network (GNN) is one of the most promising approaches to reconstructing a GRN by integrating topological neighbor propagation throughout a gene network. This paper proposes an end-to-end gene regulatory directed graph neural network (GRDGNN) schema to infer GRN from scratch using gene expression data in a supervised framework. Specifically, the regulatory relationship of the GRN can be first described as a graph multi-classification problem to distinguish the connection kinds between two nodes for subgraphs. Then, using gene dominant expression features and graph embedding node features, subgraphs consisting of gene node pairs and their neighbor are classified into four classes by a directed GNN model. In addition, a starting network structure constructed with noise from partial information can guide GRN inference through an appropriate integration approach. Finally, we demonstrate the ability of this method using the test data from DREAM5 challenge and the human embryonic stem cells (hESC) and human mature hepatocytes (hHep) datasets. Computational results show that the proposed method displays greater inference performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
桐桐应助科研通管家采纳,获得10
1秒前
常乐长安应助科研通管家采纳,获得10
1秒前
orixero应助科研通管家采纳,获得10
1秒前
科研通AI2S应助科研通管家采纳,获得10
1秒前
领导范儿应助科研通管家采纳,获得10
1秒前
领导范儿应助科研通管家采纳,获得10
2秒前
深情安青应助科研通管家采纳,获得10
2秒前
赘婿应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
2秒前
2秒前
2秒前
2秒前
wyr完成签到,获得积分10
3秒前
哦啊啊发布了新的文献求助10
3秒前
kkk发布了新的文献求助10
4秒前
4秒前
katsuras发布了新的文献求助10
4秒前
郮东完成签到 ,获得积分10
4秒前
4秒前
gcsun完成签到,获得积分10
5秒前
快乐的书雁完成签到,获得积分10
5秒前
开朗雪糕发布了新的文献求助10
6秒前
小熊熊完成签到,获得积分10
6秒前
shane发布了新的文献求助10
7秒前
Bean发布了新的文献求助10
7秒前
烂漫猫咪发布了新的文献求助10
10秒前
10秒前
爆米花应助katsuras采纳,获得10
11秒前
noss发布了新的文献求助10
11秒前
peterlee完成签到,获得积分10
13秒前
胖虎不胖完成签到,获得积分10
14秒前
NexusExplorer应助zSmart采纳,获得10
14秒前
xixihaha发布了新的文献求助10
14秒前
15秒前
就这完成签到,获得积分10
15秒前
kai_完成签到,获得积分10
16秒前
李健的小迷弟应助新司机采纳,获得10
16秒前
1230完成签到 ,获得积分10
16秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4010128
求助须知:如何正确求助?哪些是违规求助? 3550139
关于积分的说明 11304931
捐赠科研通 3284614
什么是DOI,文献DOI怎么找? 1810733
邀请新用户注册赠送积分活动 886556
科研通“疑难数据库(出版商)”最低求助积分说明 811451