An Efficient Inference Schema for Gene Regulatory Networks using Directed Graph Neural Networks

基因调控网络 推论 计算机科学 图嵌入 图形 人工智能 理论计算机科学 计算生物学 数据挖掘 基因 生物 基因表达 遗传学
作者
Zhenyu Guo,Wanhong Zhang
标识
DOI:10.23919/ccc58697.2023.10240472
摘要

Inferring gene regulatory networks (GRNs) from gene expression data has remained the computational challenge due to the large-scale number of genes and the complexity of expression data in systems biology, which may often formulate a reconstruction problem among nodes for a topology graph. Graph neural network (GNN) is one of the most promising approaches to reconstructing a GRN by integrating topological neighbor propagation throughout a gene network. This paper proposes an end-to-end gene regulatory directed graph neural network (GRDGNN) schema to infer GRN from scratch using gene expression data in a supervised framework. Specifically, the regulatory relationship of the GRN can be first described as a graph multi-classification problem to distinguish the connection kinds between two nodes for subgraphs. Then, using gene dominant expression features and graph embedding node features, subgraphs consisting of gene node pairs and their neighbor are classified into four classes by a directed GNN model. In addition, a starting network structure constructed with noise from partial information can guide GRN inference through an appropriate integration approach. Finally, we demonstrate the ability of this method using the test data from DREAM5 challenge and the human embryonic stem cells (hESC) and human mature hepatocytes (hHep) datasets. Computational results show that the proposed method displays greater inference performance.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无花果应助老迟到的妙菱采纳,获得10
1秒前
ding应助Genius采纳,获得10
1秒前
刘娇娇完成签到,获得积分10
1秒前
领导范儿应助正直酬海采纳,获得10
1秒前
认真迎夏完成签到,获得积分10
2秒前
2秒前
NexusExplorer应助星河采纳,获得10
2秒前
俊逸的念桃完成签到,获得积分10
2秒前
哇咔咔完成签到,获得积分10
2秒前
2秒前
云子发布了新的文献求助10
2秒前
zcx完成签到 ,获得积分10
3秒前
小蘑菇应助ZZM采纳,获得10
3秒前
3秒前
4秒前
4秒前
Lucas应助haha采纳,获得10
4秒前
4秒前
量子星尘发布了新的文献求助10
4秒前
5秒前
隐形曼青应助xu采纳,获得10
5秒前
Orange应助贝贝采纳,获得10
5秒前
卓一航完成签到,获得积分10
6秒前
6秒前
FashionBoy应助p65采纳,获得10
6秒前
6秒前
6秒前
孝择发布了新的文献求助10
6秒前
英姑应助cherrychou采纳,获得10
7秒前
7秒前
科研通AI6应助执着土豆采纳,获得10
7秒前
8秒前
8秒前
点金石完成签到,获得积分10
8秒前
8秒前
喻箴发布了新的文献求助10
9秒前
小巴德发布了新的文献求助10
9秒前
洛莫发布了新的文献求助10
10秒前
jing关注了科研通微信公众号
10秒前
my发布了新的文献求助10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 680
Linear and Nonlinear Functional Analysis with Applications, Second Edition 388
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5577053
求助须知:如何正确求助?哪些是违规求助? 4662311
关于积分的说明 14740828
捐赠科研通 4602926
什么是DOI,文献DOI怎么找? 2526046
邀请新用户注册赠送积分活动 1495963
关于科研通互助平台的介绍 1465478