An Efficient Inference Schema for Gene Regulatory Networks using Directed Graph Neural Networks

基因调控网络 推论 计算机科学 图嵌入 图形 人工智能 理论计算机科学 计算生物学 数据挖掘 基因 生物 基因表达 遗传学
作者
Zhenyu Guo,Wanhong Zhang
标识
DOI:10.23919/ccc58697.2023.10240472
摘要

Inferring gene regulatory networks (GRNs) from gene expression data has remained the computational challenge due to the large-scale number of genes and the complexity of expression data in systems biology, which may often formulate a reconstruction problem among nodes for a topology graph. Graph neural network (GNN) is one of the most promising approaches to reconstructing a GRN by integrating topological neighbor propagation throughout a gene network. This paper proposes an end-to-end gene regulatory directed graph neural network (GRDGNN) schema to infer GRN from scratch using gene expression data in a supervised framework. Specifically, the regulatory relationship of the GRN can be first described as a graph multi-classification problem to distinguish the connection kinds between two nodes for subgraphs. Then, using gene dominant expression features and graph embedding node features, subgraphs consisting of gene node pairs and their neighbor are classified into four classes by a directed GNN model. In addition, a starting network structure constructed with noise from partial information can guide GRN inference through an appropriate integration approach. Finally, we demonstrate the ability of this method using the test data from DREAM5 challenge and the human embryonic stem cells (hESC) and human mature hepatocytes (hHep) datasets. Computational results show that the proposed method displays greater inference performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
苏源完成签到,获得积分10
刚刚
wu关闭了wu文献求助
刚刚
刚刚
1秒前
1秒前
2秒前
2秒前
2秒前
Shawn完成签到,获得积分10
3秒前
yltstt完成签到,获得积分10
4秒前
李小新发布了新的文献求助10
4秒前
成梦发布了新的文献求助10
5秒前
乐乐应助xuex1采纳,获得10
5秒前
蜂鸟5156发布了新的文献求助10
5秒前
李爱国应助VDC采纳,获得10
6秒前
7秒前
研友_VZG7GZ应助科研通管家采纳,获得10
7秒前
科研通AI2S应助科研通管家采纳,获得10
7秒前
7秒前
充电宝应助科研通管家采纳,获得10
7秒前
ns完成签到,获得积分10
7秒前
细腻晓露发布了新的文献求助10
7秒前
李本来发布了新的文献求助10
7秒前
乐乐应助科研通管家采纳,获得10
7秒前
英姑应助科研通管家采纳,获得10
7秒前
赘婿应助科研通管家采纳,获得30
8秒前
8秒前
脑洞疼应助科研通管家采纳,获得10
8秒前
科研通AI5应助科研通管家采纳,获得30
8秒前
桐桐应助科研通管家采纳,获得10
8秒前
NN应助科研通管家采纳,获得10
8秒前
科研通AI5应助幽默的宛白采纳,获得30
8秒前
英俊的铭应助科研通管家采纳,获得10
8秒前
852应助科研通管家采纳,获得10
8秒前
单薄归尘完成签到 ,获得积分10
8秒前
无花果应助科研通管家采纳,获得30
8秒前
8秒前
LY完成签到,获得积分10
9秒前
枫于林完成签到 ,获得积分10
9秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527928
求助须知:如何正确求助?哪些是违规求助? 3108040
关于积分的说明 9287614
捐赠科研通 2805836
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709808