An Efficient Inference Schema for Gene Regulatory Networks using Directed Graph Neural Networks

基因调控网络 推论 计算机科学 图嵌入 图形 人工智能 理论计算机科学 计算生物学 数据挖掘 基因 生物 基因表达 遗传学
作者
Zhenyu Guo,Wanhong Zhang
标识
DOI:10.23919/ccc58697.2023.10240472
摘要

Inferring gene regulatory networks (GRNs) from gene expression data has remained the computational challenge due to the large-scale number of genes and the complexity of expression data in systems biology, which may often formulate a reconstruction problem among nodes for a topology graph. Graph neural network (GNN) is one of the most promising approaches to reconstructing a GRN by integrating topological neighbor propagation throughout a gene network. This paper proposes an end-to-end gene regulatory directed graph neural network (GRDGNN) schema to infer GRN from scratch using gene expression data in a supervised framework. Specifically, the regulatory relationship of the GRN can be first described as a graph multi-classification problem to distinguish the connection kinds between two nodes for subgraphs. Then, using gene dominant expression features and graph embedding node features, subgraphs consisting of gene node pairs and their neighbor are classified into four classes by a directed GNN model. In addition, a starting network structure constructed with noise from partial information can guide GRN inference through an appropriate integration approach. Finally, we demonstrate the ability of this method using the test data from DREAM5 challenge and the human embryonic stem cells (hESC) and human mature hepatocytes (hHep) datasets. Computational results show that the proposed method displays greater inference performance.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
SciGPT应助Fami采纳,获得10
1秒前
又是许想想完成签到,获得积分10
1秒前
失眠依珊发布了新的文献求助10
2秒前
2秒前
3秒前
lyy发布了新的文献求助10
3秒前
Orange应助syunlam采纳,获得10
3秒前
中原第一深情完成签到,获得积分10
4秒前
Chloro完成签到,获得积分20
6秒前
7秒前
7秒前
HYX发布了新的文献求助10
7秒前
胖大墨和黑大朵完成签到,获得积分10
8秒前
小羊打嗝发布了新的文献求助10
8秒前
9秒前
曲聋五发布了新的文献求助10
9秒前
9秒前
CodeCraft应助小铭同学采纳,获得10
9秒前
10秒前
11秒前
11秒前
Julia发布了新的文献求助10
11秒前
τ涛完成签到,获得积分10
11秒前
12秒前
12秒前
有魅力的超短裙完成签到,获得积分10
13秒前
紫薰完成签到,获得积分10
13秒前
13秒前
大橙子完成签到,获得积分10
14秒前
qq完成签到,获得积分10
14秒前
大个应助努力搞科研采纳,获得10
14秒前
14秒前
慧子发布了新的文献求助10
15秒前
甜蜜寄文发布了新的文献求助10
16秒前
Fami发布了新的文献求助10
17秒前
飞刀又见飞刀完成签到,获得积分10
18秒前
bzlish发布了新的文献求助10
18秒前
臧为发布了新的文献求助10
18秒前
zy完成签到,获得积分20
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
小学科学课程与教学 500
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5642830
求助须知:如何正确求助?哪些是违规求助? 4759998
关于积分的说明 15019132
捐赠科研通 4801370
什么是DOI,文献DOI怎么找? 2566676
邀请新用户注册赠送积分活动 1524579
关于科研通互助平台的介绍 1484206