Improved DRT Determination Through a Modified Sparse Spike Deconvolution

反褶积 Tikhonov正则化 算法 正规化(语言学) 数学 缩小 数学优化 应用数学 数学分析 计算机科学 反问题 人工智能
作者
Tobias G. Bergmann,Nicolas Schlüter
出处
期刊:Meeting abstracts 卷期号:MA2023-01 (54): 64-64
标识
DOI:10.1149/ma2023-015464mtgabs
摘要

Impedance spectroscopy is a powerful characterization method to evaluate the performance of electrochemical systems. However, overlapping signals in the resulting impedance spectra oftentimes cause misinterpretation of the data. The distribution of relaxation times (DRT) method overcomes this problem by transferring the impedance data from the frequency domain into the time domain, which yields DRT spectra with an increased resolution. Unfortunately, the determination of the DRT is an ill-posed problem, and appropriate mathematical regularizations become inevitable to find suitable solutions. [1] The Tikhonov algorithm is a widespread algorithm for the determination of the DRT g and is given by [2] min g (|| Z - A ⋅ g || + λ ⋅ ||L ⋅ g ||) where the regularization parameter λ scales the penalty term. Unfortunately, this leads to unlikely spectra due to necessary boundaries. The sparse spike deconvolution is using the known positive distribution function for a ZARC-element. Thus this deconvolution leads to more natural spectra for the determination of the DRT. However, the sparse spike deconvolution has a very limited scope by using one single regularization parameter. Consequently, we replaced the scalar regularization parameter with a vector P and added a new regularization parameter k for the simultaneous minimization of the vector and the norm of the residuals. The minimization function of this method is given by [3] min P (|| Z - A ⋅ G( P ) ⋅ c || ⋅ k + || ln (1 - P )||) Herein the G is a matrix with multiple impulse functions. Literature: [1] Ivers-Tiffée, E., & Weber, A., J.Ceram. Soc. Jpn. 2017, 125, 4. [2] Gavrilyuk, A. L., Osinkin, D. A., & Bronin, D. I., Russ. J. Electrochem., 2017, 53 , 6. [3] Bergmann, T. G., & Schlüter, N., ChemPhysChem, 2022

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SaSa关注了科研通微信公众号
刚刚
Ran完成签到 ,获得积分10
1秒前
希望天下0贩的0应助xiaohui采纳,获得30
2秒前
12发布了新的文献求助10
3秒前
幸运星发布了新的文献求助10
4秒前
4秒前
呱呱呱发布了新的文献求助10
5秒前
游悠悠发布了新的文献求助10
5秒前
6秒前
邓敬燃发布了新的文献求助10
6秒前
6秒前
6秒前
番fan发布了新的文献求助10
6秒前
7秒前
7秒前
yznfly应助x1采纳,获得20
7秒前
8秒前
情怀应助聪慧石头采纳,获得10
9秒前
MSYzack发布了新的文献求助10
9秒前
9秒前
吃货发布了新的文献求助10
10秒前
10秒前
10秒前
个性的荆发布了新的文献求助10
11秒前
10711发布了新的文献求助10
12秒前
lgx完成签到,获得积分10
13秒前
Ss发布了新的文献求助20
13秒前
夏木发布了新的文献求助10
13秒前
王京发布了新的文献求助20
14秒前
张先生发布了新的文献求助10
14秒前
科研强完成签到,获得积分10
15秒前
asdfzxcv应助上山的吗喽采纳,获得10
15秒前
yy发布了新的文献求助10
15秒前
可不可乐完成签到,获得积分10
17秒前
18秒前
沐易完成签到,获得积分10
18秒前
19秒前
量子星尘发布了新的文献求助10
19秒前
19秒前
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5642013
求助须知:如何正确求助?哪些是违规求助? 4757923
关于积分的说明 15015955
捐赠科研通 4800475
什么是DOI,文献DOI怎么找? 2566095
邀请新用户注册赠送积分活动 1524208
关于科研通互助平台的介绍 1483840