Improved DRT Determination Through a Modified Sparse Spike Deconvolution

反褶积 Tikhonov正则化 算法 正规化(语言学) 数学 缩小 数学优化 应用数学 数学分析 计算机科学 反问题 人工智能
作者
Tobias G. Bergmann,Nicolas Schlüter
出处
期刊:Meeting abstracts 卷期号:MA2023-01 (54): 64-64
标识
DOI:10.1149/ma2023-015464mtgabs
摘要

Impedance spectroscopy is a powerful characterization method to evaluate the performance of electrochemical systems. However, overlapping signals in the resulting impedance spectra oftentimes cause misinterpretation of the data. The distribution of relaxation times (DRT) method overcomes this problem by transferring the impedance data from the frequency domain into the time domain, which yields DRT spectra with an increased resolution. Unfortunately, the determination of the DRT is an ill-posed problem, and appropriate mathematical regularizations become inevitable to find suitable solutions. [1] The Tikhonov algorithm is a widespread algorithm for the determination of the DRT g and is given by [2] min g (|| Z - A ⋅ g || + λ ⋅ ||L ⋅ g ||) where the regularization parameter λ scales the penalty term. Unfortunately, this leads to unlikely spectra due to necessary boundaries. The sparse spike deconvolution is using the known positive distribution function for a ZARC-element. Thus this deconvolution leads to more natural spectra for the determination of the DRT. However, the sparse spike deconvolution has a very limited scope by using one single regularization parameter. Consequently, we replaced the scalar regularization parameter with a vector P and added a new regularization parameter k for the simultaneous minimization of the vector and the norm of the residuals. The minimization function of this method is given by [3] min P (|| Z - A ⋅ G( P ) ⋅ c || ⋅ k + || ln (1 - P )||) Herein the G is a matrix with multiple impulse functions. Literature: [1] Ivers-Tiffée, E., & Weber, A., J.Ceram. Soc. Jpn. 2017, 125, 4. [2] Gavrilyuk, A. L., Osinkin, D. A., & Bronin, D. I., Russ. J. Electrochem., 2017, 53 , 6. [3] Bergmann, T. G., & Schlüter, N., ChemPhysChem, 2022

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
服部平次发布了新的文献求助10
2秒前
2秒前
上官若男应助怕黑的擎采纳,获得10
2秒前
tao发布了新的文献求助10
2秒前
2秒前
3秒前
yy完成签到 ,获得积分10
3秒前
yzn发布了新的文献求助30
3秒前
3秒前
4秒前
5秒前
西米发布了新的文献求助10
6秒前
7秒前
严逍遥应助meixinhu采纳,获得10
7秒前
8秒前
8秒前
8秒前
9秒前
9秒前
10秒前
吕景宽发布了新的文献求助30
10秒前
安详问晴发布了新的文献求助10
10秒前
10秒前
11秒前
润柏海完成签到 ,获得积分10
13秒前
DamenS发布了新的文献求助10
14秒前
勤奋未来完成签到,获得积分20
14秒前
14秒前
怕黑的擎发布了新的文献求助10
15秒前
15秒前
15秒前
16秒前
18秒前
18秒前
令狐凝阳发布了新的文献求助10
19秒前
勤奋未来发布了新的文献求助10
19秒前
20秒前
yzn完成签到,获得积分10
20秒前
20秒前
朴实浩宇完成签到 ,获得积分10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Comparing natural with chemical additive production 500
Machine Learning in Chemistry 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5196752
求助须知:如何正确求助?哪些是违规求助? 4378291
关于积分的说明 13635900
捐赠科研通 4233805
什么是DOI,文献DOI怎么找? 2322437
邀请新用户注册赠送积分活动 1320583
关于科研通互助平台的介绍 1270997