Cell classification with worse-case boosting for intelligent cervical cancer screening

Boosting(机器学习) 分类器(UML) 概化理论 人工智能 计算机科学 机器学习 训练集 梯度升压 宫颈癌 模式识别(心理学) 医学 数学 统计 癌症 随机森林 内科学
作者
Youyi Song,Jing Zou,Kup‐Sze Choi,Baiying Lei,Jing Qin
出处
期刊:Medical Image Analysis [Elsevier BV]
卷期号:91: 103014-103014 被引量:11
标识
DOI:10.1016/j.media.2023.103014
摘要

Cell classification underpins intelligent cervical cancer screening, a cytology examination that effectively decreases both the morbidity and mortality of cervical cancer. This task, however, is rather challenging, mainly due to the difficulty of collecting a training dataset representative sufficiently of the unseen test data, as there are wide variations of cells' appearance and shape at different cancerous statuses. This difficulty makes the classifier, though trained properly, often classify wrongly for cells that are underrepresented by the training dataset, eventually leading to a wrong screening result. To address it, we propose a new learning algorithm, called worse-case boosting, for classifiers effectively learning from under-representative datasets in cervical cell classification. The key idea is to learn more from worse-case data for which the classifier has a larger gradient norm compared to other training data, so these data are more likely to correspond to underrepresented data, by dynamically assigning them more training iterations and larger loss weights for boosting the generalizability of the classifier on underrepresented data. We achieve this idea by sampling worse-case data per the gradient norm information and then enhancing their loss values to update the classifier. We demonstrate the effectiveness of this new learning algorithm on two publicly available cervical cell classification datasets (the two largest ones to the best of our knowledge), and positive results (4% accuracy improvement) yield in the extensive experiments. The source codes are available at: https://github.com/YouyiSong/Worse-Case-Boosting.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
汉堡包应助Allis采纳,获得10
刚刚
2秒前
还单身的语薇完成签到 ,获得积分10
3秒前
3秒前
今天我瘦了吗完成签到,获得积分10
5秒前
左丘如萱发布了新的文献求助10
5秒前
和老爹豆豆完成签到,获得积分20
5秒前
香蕉觅云应助波波采纳,获得10
5秒前
hbhbj发布了新的文献求助10
5秒前
DondeDu给DondeDu的求助进行了留言
5秒前
秋澄发布了新的文献求助10
5秒前
林间清晨完成签到 ,获得积分10
6秒前
小小怪完成签到 ,获得积分10
7秒前
7秒前
9秒前
小叮当发布了新的文献求助10
9秒前
10秒前
10秒前
11秒前
李乾坤完成签到,获得积分10
11秒前
tt发布了新的文献求助10
11秒前
12秒前
浮游应助小芦铃采纳,获得10
12秒前
Edward完成签到,获得积分10
12秒前
呆萌安萱完成签到,获得积分10
13秒前
两眼一睁就是困完成签到,获得积分10
14秒前
科研通AI6应助化学喵采纳,获得10
14秒前
14秒前
hbhbj发布了新的文献求助10
16秒前
16秒前
爆米花应助Pluto采纳,获得10
17秒前
jiangzong完成签到,获得积分10
17秒前
隐形曼青应助找不到文献采纳,获得10
17秒前
帅气小霜完成签到,获得积分10
17秒前
LKSkywalker完成签到,获得积分10
18秒前
TXQ发布了新的文献求助10
20秒前
英俊的铭应助zhuzhu采纳,获得10
21秒前
Xx完成签到,获得积分10
21秒前
Epiphany完成签到,获得积分10
21秒前
欣慰的绿蝶关注了科研通微信公众号
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Constitutional and Administrative Law 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5264928
求助须知:如何正确求助?哪些是违规求助? 4425065
关于积分的说明 13775359
捐赠科研通 4300354
什么是DOI,文献DOI怎么找? 2359671
邀请新用户注册赠送积分活动 1355731
关于科研通互助平台的介绍 1317058