Cell classification with worse-case boosting for intelligent cervical cancer screening

Boosting(机器学习) 分类器(UML) 概化理论 人工智能 计算机科学 机器学习 训练集 梯度升压 宫颈癌 模式识别(心理学) 医学 数学 统计 癌症 随机森林 内科学
作者
Youyi Song,Jing Zou,Kup‐Sze Choi,Baiying Lei,Jing Qin
出处
期刊:Medical Image Analysis [Elsevier]
卷期号:91: 103014-103014 被引量:11
标识
DOI:10.1016/j.media.2023.103014
摘要

Cell classification underpins intelligent cervical cancer screening, a cytology examination that effectively decreases both the morbidity and mortality of cervical cancer. This task, however, is rather challenging, mainly due to the difficulty of collecting a training dataset representative sufficiently of the unseen test data, as there are wide variations of cells' appearance and shape at different cancerous statuses. This difficulty makes the classifier, though trained properly, often classify wrongly for cells that are underrepresented by the training dataset, eventually leading to a wrong screening result. To address it, we propose a new learning algorithm, called worse-case boosting, for classifiers effectively learning from under-representative datasets in cervical cell classification. The key idea is to learn more from worse-case data for which the classifier has a larger gradient norm compared to other training data, so these data are more likely to correspond to underrepresented data, by dynamically assigning them more training iterations and larger loss weights for boosting the generalizability of the classifier on underrepresented data. We achieve this idea by sampling worse-case data per the gradient norm information and then enhancing their loss values to update the classifier. We demonstrate the effectiveness of this new learning algorithm on two publicly available cervical cell classification datasets (the two largest ones to the best of our knowledge), and positive results (4% accuracy improvement) yield in the extensive experiments. The source codes are available at: https://github.com/YouyiSong/Worse-Case-Boosting.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
1秒前
贤惠的早晨完成签到,获得积分10
2秒前
吴彦祖发布了新的文献求助10
3秒前
3秒前
量子星尘发布了新的文献求助10
4秒前
4秒前
4秒前
4秒前
哒哒完成签到,获得积分10
4秒前
CodeCraft应助ss采纳,获得10
5秒前
5秒前
5秒前
AN发布了新的文献求助10
6秒前
6秒前
1234qwer完成签到,获得积分10
6秒前
爱笑灵雁完成签到,获得积分10
6秒前
科研通AI6应助wrimer采纳,获得10
7秒前
7秒前
7秒前
情怀应助1112222采纳,获得10
8秒前
8秒前
Jasper应助Albee采纳,获得10
8秒前
我是老大应助飞鸿影下采纳,获得10
8秒前
8秒前
大方的小猫咪完成签到 ,获得积分10
8秒前
小勋osh发布了新的文献求助30
10秒前
10秒前
11秒前
11秒前
12秒前
12秒前
13秒前
情怀应助务实慕青采纳,获得10
13秒前
朽木完成签到,获得积分10
13秒前
文艺寄灵完成签到,获得积分10
13秒前
13秒前
wh发布了新的文献求助10
14秒前
追寻的忆寒完成签到,获得积分10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 680
Linear and Nonlinear Functional Analysis with Applications, Second Edition 388
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5578047
求助须知:如何正确求助?哪些是违规求助? 4663043
关于积分的说明 14744355
捐赠科研通 4603721
什么是DOI,文献DOI怎么找? 2526643
邀请新用户注册赠送积分活动 1496203
关于科研通互助平台的介绍 1465657