Cell classification with worse-case boosting for intelligent cervical cancer screening

Boosting(机器学习) 分类器(UML) 概化理论 人工智能 计算机科学 机器学习 训练集 梯度升压 宫颈癌 模式识别(心理学) 医学 数学 统计 癌症 随机森林 内科学
作者
Youyi Song,Jing Zou,Kup‐Sze Choi,Baiying Lei,Jing Qin
出处
期刊:Medical Image Analysis [Elsevier BV]
卷期号:91: 103014-103014 被引量:6
标识
DOI:10.1016/j.media.2023.103014
摘要

Cell classification underpins intelligent cervical cancer screening, a cytology examination that effectively decreases both the morbidity and mortality of cervical cancer. This task, however, is rather challenging, mainly due to the difficulty of collecting a training dataset representative sufficiently of the unseen test data, as there are wide variations of cells' appearance and shape at different cancerous statuses. This difficulty makes the classifier, though trained properly, often classify wrongly for cells that are underrepresented by the training dataset, eventually leading to a wrong screening result. To address it, we propose a new learning algorithm, called worse-case boosting, for classifiers effectively learning from under-representative datasets in cervical cell classification. The key idea is to learn more from worse-case data for which the classifier has a larger gradient norm compared to other training data, so these data are more likely to correspond to underrepresented data, by dynamically assigning them more training iterations and larger loss weights for boosting the generalizability of the classifier on underrepresented data. We achieve this idea by sampling worse-case data per the gradient norm information and then enhancing their loss values to update the classifier. We demonstrate the effectiveness of this new learning algorithm on two publicly available cervical cell classification datasets (the two largest ones to the best of our knowledge), and positive results (4% accuracy improvement) yield in the extensive experiments. The source codes are available at: https://github.com/YouyiSong/Worse-Case-Boosting.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
核桃应助科研通管家采纳,获得10
3秒前
小马甲应助科研通管家采纳,获得10
3秒前
小马甲应助科研通管家采纳,获得10
3秒前
我是老大应助科研通管家采纳,获得10
3秒前
英俊的晟睿完成签到,获得积分10
3秒前
ED应助科研通管家采纳,获得10
3秒前
星辰大海应助科研通管家采纳,获得10
3秒前
天天快乐应助科研通管家采纳,获得10
3秒前
慕青应助科研通管家采纳,获得10
4秒前
不停发布了新的文献求助10
4秒前
卡卡西应助科研通管家采纳,获得30
4秒前
MessOo发布了新的文献求助10
5秒前
Dream_fai完成签到,获得积分10
5秒前
ziying126完成签到,获得积分10
6秒前
6秒前
7秒前
打工人发布了新的文献求助10
7秒前
8秒前
顶刊我来了完成签到,获得积分10
9秒前
Hang完成签到,获得积分10
9秒前
Hello应助苹果帆布鞋采纳,获得10
9秒前
负数发布了新的文献求助30
10秒前
归尘发布了新的文献求助10
11秒前
薄纱流完成签到,获得积分10
11秒前
kewy完成签到,获得积分10
12秒前
12秒前
ruqayyah完成签到,获得积分10
14秒前
14秒前
LLL完成签到,获得积分10
15秒前
15秒前
朝暮完成签到 ,获得积分10
16秒前
不停完成签到,获得积分10
16秒前
卜大大发布了新的文献求助10
16秒前
17秒前
qqwrv发布了新的文献求助10
18秒前
婷婷发布了新的文献求助10
19秒前
薄纱流发布了新的文献求助10
20秒前
研友_24789完成签到,获得积分10
20秒前
李逸群发布了新的文献求助10
20秒前
21秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961001
求助须知:如何正确求助?哪些是违规求助? 3507225
关于积分的说明 11134609
捐赠科研通 3239650
什么是DOI,文献DOI怎么找? 1790276
邀请新用户注册赠送积分活动 872341
科研通“疑难数据库(出版商)”最低求助积分说明 803150