Drivers of mortality in COVID ARDS depend on patient sub-type

急性呼吸窘迫综合征 医学 队列 回顾性队列研究 急性呼吸窘迫 重症监护医学 2019年冠状病毒病(COVID-19) 队列研究 急诊医学 内科学 疾病 传染病(医学专业)
作者
Helen Cheyne,Amir Gandomi,Shahrzad Hosseini Vajargah,Victoria M. Catterson,Travis Mackoy,Lauren McCullagh,Gabriel Musso,Negin Hajizadeh
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:166: 107483-107483 被引量:1
标识
DOI:10.1016/j.compbiomed.2023.107483
摘要

The most common cause of death in people with COVID-19 is Acute Respiratory Distress Syndrome (ARDS). Prior studies have demonstrated that ARDS is a heterogeneous syndrome and have identified ARDS sub-types (phenoclusters). However, non-COVID-19 ARDS phenoclusters do not clearly apply to COVID-19 ARDS patients. In this retrospective cohort study, we implemented an iterative approach, combining supervised and unsupervised machine learning methodologies, to identify clinically relevant COVID-19 ARDS phenoclusters, as well as characteristics that are predictive of the outcome for each phenocluster. To this end, we applied a supervised model to identify risk factors for hospital mortality for each phenocluster and compared these between phenoclusters and the entire cohort. We trained the models using a comprehensive, preprocessed dataset of 2,864 hospitalized COVID-19 ARDS patients. Our research demonstrates that the risk factors predicting mortality in the overall cohort of COVID-19 ARDS may not necessarily apply to specific phenoclusters. Additionally, some risk factors increase the risk of hospital mortality in some phenoclusters but decrease mortality in others. These phenocluster-specific risk factors would not have been observed with a single predictive model. Heterogeneity in phenoclusters of COVID-19 ARDS as well as the drivers of mortality may partially explain challenges in finding effective treatments for all patients with ARDS.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
星辰大海应助科研通管家采纳,获得10
1秒前
香蕉觅云应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
1秒前
CipherSage应助科研通管家采纳,获得10
1秒前
1秒前
Leif应助科研通管家采纳,获得20
1秒前
ding应助科研通管家采纳,获得20
1秒前
NexusExplorer应助科研通管家采纳,获得10
2秒前
Owen应助科研通管家采纳,获得10
2秒前
上官若男应助科研通管家采纳,获得10
2秒前
prosperp应助科研通管家采纳,获得10
2秒前
zhang完成签到,获得积分10
2秒前
烟花应助科研通管家采纳,获得10
2秒前
科研通AI5应助liuguohua126采纳,获得10
2秒前
Hello应助科研通管家采纳,获得10
2秒前
小蘑菇应助科研通管家采纳,获得10
2秒前
2秒前
科目三应助科研通管家采纳,获得10
2秒前
Ava应助科研通管家采纳,获得10
2秒前
小星发布了新的文献求助10
2秒前
3秒前
3秒前
深情安青应助小可采纳,获得10
3秒前
4秒前
高大代容发布了新的文献求助10
4秒前
杳鸢应助张肥肥采纳,获得10
4秒前
4秒前
breath完成签到 ,获得积分10
4秒前
伊丽莎白打工完成签到,获得积分10
4秒前
cc0514gr完成签到,获得积分10
5秒前
研友_nv2r4n发布了新的文献求助10
5秒前
WxChen发布了新的文献求助20
5秒前
snowdrift完成签到,获得积分10
5秒前
5秒前
Din完成签到 ,获得积分10
5秒前
6秒前
6秒前
abcc1234完成签到,获得积分10
6秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740