Drivers of mortality in COVID ARDS depend on patient sub-type

急性呼吸窘迫综合征 医学 队列 回顾性队列研究 急性呼吸窘迫 重症监护医学 2019年冠状病毒病(COVID-19) 队列研究 急诊医学 内科学 疾病 传染病(医学专业)
作者
Helen Cheyne,Amir Gandomi,Shahrzad Hosseini Vajargah,Victoria M. Catterson,Travis Mackoy,Lauren McCullagh,Gabriel Musso,Negin Hajizadeh
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:166: 107483-107483 被引量:1
标识
DOI:10.1016/j.compbiomed.2023.107483
摘要

The most common cause of death in people with COVID-19 is Acute Respiratory Distress Syndrome (ARDS). Prior studies have demonstrated that ARDS is a heterogeneous syndrome and have identified ARDS sub-types (phenoclusters). However, non-COVID-19 ARDS phenoclusters do not clearly apply to COVID-19 ARDS patients. In this retrospective cohort study, we implemented an iterative approach, combining supervised and unsupervised machine learning methodologies, to identify clinically relevant COVID-19 ARDS phenoclusters, as well as characteristics that are predictive of the outcome for each phenocluster. To this end, we applied a supervised model to identify risk factors for hospital mortality for each phenocluster and compared these between phenoclusters and the entire cohort. We trained the models using a comprehensive, preprocessed dataset of 2,864 hospitalized COVID-19 ARDS patients. Our research demonstrates that the risk factors predicting mortality in the overall cohort of COVID-19 ARDS may not necessarily apply to specific phenoclusters. Additionally, some risk factors increase the risk of hospital mortality in some phenoclusters but decrease mortality in others. These phenocluster-specific risk factors would not have been observed with a single predictive model. Heterogeneity in phenoclusters of COVID-19 ARDS as well as the drivers of mortality may partially explain challenges in finding effective treatments for all patients with ARDS.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
a成发布了新的文献求助10
1秒前
噜噜噜完成签到 ,获得积分10
1秒前
大方的嫣发布了新的文献求助10
2秒前
英姑应助Yuki酱采纳,获得10
2秒前
Kun完成签到,获得积分20
2秒前
爆米花应助冷静青文采纳,获得10
2秒前
bkagyin应助Augenstern采纳,获得10
3秒前
ysssbq完成签到,获得积分10
3秒前
公司账号2发布了新的文献求助10
3秒前
米尼发布了新的文献求助10
4秒前
4秒前
zzz发布了新的文献求助10
4秒前
拉不不发布了新的文献求助10
5秒前
11235应助niliuguang采纳,获得10
5秒前
5秒前
5秒前
a成完成签到,获得积分10
5秒前
bbzzzha发布了新的文献求助10
7秒前
Kikisong完成签到,获得积分10
7秒前
7秒前
称心问凝完成签到,获得积分10
7秒前
英吉利25发布了新的文献求助10
8秒前
嗨是完成签到,获得积分10
8秒前
pluto应助专一的善愁采纳,获得10
9秒前
9秒前
9秒前
周周发布了新的文献求助10
9秒前
魏欣雨发布了新的文献求助10
9秒前
明月渠完成签到,获得积分10
10秒前
大模型应助科研通管家采纳,获得10
10秒前
小马甲应助科研通管家采纳,获得10
10秒前
10秒前
10秒前
kikichiu应助科研通管家采纳,获得10
10秒前
11秒前
11秒前
浮游应助科研通管家采纳,获得30
11秒前
化学教育学学学完成签到,获得积分10
11秒前
今后应助科研通管家采纳,获得10
11秒前
无极微光应助科研通管家采纳,获得20
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 1500
List of 1,091 Public Pension Profiles by Region 1001
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5472888
求助须知:如何正确求助?哪些是违规求助? 4575120
关于积分的说明 14350464
捐赠科研通 4502441
什么是DOI,文献DOI怎么找? 2467176
邀请新用户注册赠送积分活动 1455104
关于科研通互助平台的介绍 1429273