镧系元素
单斜晶系
化学
结晶学
锂(药物)
晶体结构
氯化物
粉末衍射
空间组
化学计量学
无机化学
衍射
X射线晶体学
离子
物理化学
有机化学
医学
物理
光学
内分泌学
作者
Pia L. Lange,Sebastian Bette,Sabine Strobel,Robert E. Dinnebier,Thomas Schleid
出处
期刊:Crystals
[Multidisciplinary Digital Publishing Institute]
日期:2023-09-22
卷期号:13 (10): 1408-1408
标识
DOI:10.3390/cryst13101408
摘要
The synthesis and structural analysis of three new chloride-containing lithium thiophosphates(V) Li4Ln[PS4]2Cl with trivalent lanthanoids (Ln = Pr, Nd and Sm) are presented and discussed. Single crystals of Li4Sm[PS4]2Cl were obtained and used for crystal structure determination by applying X-ray diffraction. The other compounds were found to crystallize isotypically in the monoclinic space group C2/c. Thus, Li4Sm[PS4]2Cl (a = 2089.31(12) pm, b = 1579.69(9) pm, c = 1309.04(8) pm, β = 109.978(3)°, Z = 12) was used as a representative model to further describe the crystal structure in detail since Li4Pr[PS4]2Cl and Li4Nd[PS4]2Cl were confirmed to be isotypic using powder X-ray diffraction measurements (PXRD). In all cases, a trigonal structure in the space group R3¯ (e.g., a = 1579.67(9) pm, c = 2818.36(16) pm, c/a = 1.784, Z = 18, for Li4Sm[PS4]2Cl) displaying almost identical building units worked initially misleadingly. The structure refinement of Li4Sm[PS4]2Cl revealed bicapped trigonal prisms of sulfur atoms coordinating the two crystallographically distinct (Sm1)3+ and (Sm2)3+ cations, which are further coordinated by four anionic [PS4]3− tetrahedra. The compounds also contain chloride anions residing within channel-like pores made of [PS4]3− units. Eight different sites for Li+ cations were identified with various coordination environments (C.N. = 4–6) with respect to chlorine and sulfur. EDXS measurements supported the stoichiometric formula of Li4Ln[PS4]2Cl, and diffuse reflectance spectroscopy revealed optical band gaps of 2.69 eV, 3.52 eV, and 3.49 eV for Li4Sm[PS4]2Cl, Li4Nd[PS4]2Cl, and Li4Pr[PS4]2Cl, respectively. The activation energy for Li+-cation mobility in Li4Sm[PS4]2Cl was calculated as Ea(Li+) = 0.88 eV using BVEL, which indicates potential as a Li+-cation conductor.
科研通智能强力驱动
Strongly Powered by AbleSci AI