Covalent Immobilization of Quaternary Ammonium Salts on Covalent Organic Framework: Sustainable Intensification Strategy for the Synthesis of Cyclic Carbonates from CO2

共价键 催化作用 环加成 化学 共价有机骨架 有机化学
作者
Somnath Sarkar,Swarbhanu Ghosh,Robius Sani,Jhumur Seth,Aslam Khan,Sk. Manirul Islam
出处
期刊:ACS Sustainable Chemistry & Engineering [American Chemical Society]
卷期号:11 (39): 14422-14434 被引量:33
标识
DOI:10.1021/acssuschemeng.3c03041
摘要

Sustainable metal-free catalytic conversion of carbon dioxide (CO2) via cycloaddition of epoxides with CO2 has shown great promise but suffers from a lack of recyclability because of the homogeneous nature, limiting their use. Heterogeneous organocatalysts have gained immense attention in the last decade because of superior application potential and their important characteristics, and they also play pivotal roles in making environmentally friendly processes a reality. Herein, we describe an unprecedented postsynthetic modification approach for efficient covalent immobilization of quaternary ammonium salts to a microporous covalent organic framework (COF). More interestingly, no noticeable loss in crystallinity occurred after postsynthetic modification (PSM) and the quaternary ammonium salt-decorated COF (MA-PDA IL@COF) consists of only micropores (around 6–15 Å), which are smaller than most of the reported COF-based catalysts. Detailed investigations on CO2 chemical fixation reveal that ionic liquid-based COF is a promising metal-free catalyst to promote the coupling of CO2 with epoxides under very mild conditions (metal-free/solvent-free/cocatalyst-free/additive-free and 1 atm of CO2 pressure). The metal-free COF displayed quantitative selectivity, and more intriguingly, the cycloaddition reaction with CO2 occurred with a high efficiency, broad scope, and functional group tolerance without additives or cocatalysts. The catalytic system can be recovered for repeated use at least five times with almost similar catalytic performance and a promising prerequisite for industrial implementation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
keyaner发布了新的文献求助10
刚刚
是谁还没睡完成签到 ,获得积分10
刚刚
刚刚
1秒前
科研通AI6应助yangyajie采纳,获得10
2秒前
丘比特应助lawrenceip0926采纳,获得10
2秒前
2秒前
KIKI完成签到,获得积分10
2秒前
fuchao发布了新的文献求助10
2秒前
khh关注了科研通微信公众号
2秒前
3秒前
李伟完成签到,获得积分10
3秒前
星辰完成签到,获得积分10
3秒前
sakyadamo发布了新的文献求助10
3秒前
科研通AI6应助上山的吗喽采纳,获得10
4秒前
悦耳的灵完成签到 ,获得积分10
4秒前
cheng发布了新的文献求助10
5秒前
5秒前
Vv完成签到 ,获得积分10
5秒前
小二郎应助Jerez采纳,获得10
6秒前
Jasper应助韩修杰采纳,获得10
6秒前
orixero应助10711采纳,获得10
6秒前
积极嚓茶完成签到,获得积分10
7秒前
Hiiiiii发布了新的文献求助10
7秒前
7秒前
敬之发布了新的文献求助10
8秒前
研友_VZG7GZ应助清欢采纳,获得10
8秒前
8秒前
8秒前
可爱的函函应助谦让靖儿采纳,获得10
9秒前
wei998发布了新的文献求助10
9秒前
隐形曼青应助liu采纳,获得10
10秒前
10秒前
10秒前
13秒前
13秒前
戴明杰发布了新的文献求助30
13秒前
CodeCraft应助琢钰采纳,获得10
14秒前
量子星尘发布了新的文献求助10
15秒前
wxx771510625发布了新的文献求助10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5642103
求助须知:如何正确求助?哪些是违规求助? 4758150
关于积分的说明 15016411
捐赠科研通 4800600
什么是DOI,文献DOI怎么找? 2566140
邀请新用户注册赠送积分活动 1524244
关于科研通互助平台的介绍 1483901