Disparities in seizure outcomes revealed by large language models

民族 癫痫 专业 医学 卫生公平 医疗保健 考试(生物学) 公共卫生 人口学 家庭医学 心理学 精神科 政治学 古生物学 护理部 社会学 法学 生物
作者
Kevin Xie,William K.S. Ojemann,Ryan S. Gallagher,Alfredo Lucas,Chloé E. Hill,Roy H. Hamilton,Kevin B. Johnson,Dan Roth,Brian Litt,Colin A. Ellis
出处
期刊:Cold Spring Harbor Laboratory - medRxiv 被引量:2
标识
DOI:10.1101/2023.09.20.23295842
摘要

Abstract Objective Large-language models (LLMs) in healthcare have the potential to propagate existing biases or introduce new ones. For people with epilepsy, social determinants of health are associated with disparities in access to care, but their impact on seizure outcomes among those with access to specialty care remains unclear. Here we (1) evaluated our validated, epilepsy-specific LLM for intrinsic bias, and (2) used LLM-extracted seizure outcomes to test the hypothesis that different demographic groups have different seizure outcomes. Methods First, we tested our LLM for intrinsic bias in the form of differential performance in demographic groups by race, ethnicity, sex, income, and health insurance in manually annotated notes. Next, we used LLM-classified seizure freedom at each office visit to test for outcome disparities in the same demographic groups, using univariable and multivariable analyses. Results We analyzed 84,675 clinic visits from 25,612 patients seen at our epilepsy center 2005-2022. We found no differences in the accuracy, or positive or negative class balance of outcome classifications across demographic groups. Multivariable analysis indicated worse seizure outcomes for female patients (OR 1.33, p = 3x10 -8 ), those with public insurance (OR 1.53, p = 2x10 -13 ), and those from lower-income zip codes (OR ≥ 1.22, p ≤ 6.6x10 -3 ). Black patients had worse outcomes than White patients in univariable but not multivariable analysis (OR 1.03, p = 0.66). Significance We found no evidence that our LLM was intrinsically biased against any demographic group. Seizure freedom extracted by LLM revealed disparities in seizure outcomes across several demographic groups. These findings highlight the critical need to reduce disparities in the care of people with epilepsy. Key Points We used large language models (LLMs) and natural language processing to extract seizure outcomes from clinical note text. We found no evidence of intrinsic bias in the LLM algorithm, in that it performed similarly across all demographic groups. Using LLM-extracted seizure outcomes, female sex, public insurance, and lower income zip- codes were associated with higher likelihood of seizures at each visit. Black race was associated with higher likelihood of seizures in univariable but not multivariable analysis. These findings highlight the critical need to reduce disparities in the care of people with epilepsy.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6应助勤奋幻柏采纳,获得10
刚刚
能干的邹完成签到 ,获得积分10
1秒前
嘀嘀哒哒发布了新的文献求助10
2秒前
3秒前
Dreames完成签到,获得积分10
4秒前
5秒前
5秒前
7秒前
nnnaaaa发布了新的文献求助10
10秒前
overcome发布了新的文献求助30
10秒前
初荣发布了新的文献求助30
11秒前
量子星尘发布了新的文献求助10
12秒前
12秒前
lily发布了新的文献求助10
12秒前
悠悠应助勤奋幻柏采纳,获得10
14秒前
温暖的孤兰完成签到 ,获得积分10
14秒前
沿途有你完成签到 ,获得积分10
15秒前
TT发布了新的文献求助20
17秒前
桃花扇完成签到,获得积分20
18秒前
沙糖桔发布了新的文献求助10
18秒前
小于完成签到,获得积分10
18秒前
18秒前
无花果应助加菲丰丰采纳,获得10
20秒前
迷你的浩宇完成签到 ,获得积分10
20秒前
迷你的冬萱完成签到,获得积分10
20秒前
专注黄豆发布了新的文献求助10
23秒前
23秒前
23秒前
隐形曼青应助fly圈圈呀采纳,获得10
24秒前
蚂蚱别跳完成签到,获得积分10
25秒前
烟花应助黄hhhhhhhh采纳,获得10
25秒前
晨颂丶发布了新的文献求助10
26秒前
繁荣的忆文完成签到,获得积分10
26秒前
勤奋幻柏完成签到,获得积分10
27秒前
明亮灭绝完成签到,获得积分10
27秒前
27秒前
28秒前
徐安鹏发布了新的文献求助10
28秒前
28秒前
hyx发布了新的文献求助10
28秒前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 1000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
List of 1,091 Public Pension Profiles by Region 981
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Elements of Evolutionary Genetics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5453860
求助须知:如何正确求助?哪些是违规求助? 4561372
关于积分的说明 14282285
捐赠科研通 4485318
什么是DOI,文献DOI怎么找? 2456660
邀请新用户注册赠送积分活动 1447375
关于科研通互助平台的介绍 1422701