Disparities in seizure outcomes revealed by large language models

民族 癫痫 专业 医学 卫生公平 医疗保健 考试(生物学) 公共卫生 人口学 家庭医学 心理学 精神科 政治学 古生物学 护理部 社会学 法学 生物
作者
Kevin Xie,William K.S. Ojemann,Ryan S. Gallagher,Alfredo Lucas,Chloé E. Hill,Roy H. Hamilton,Kevin B. Johnson,Dan Roth,Brian Litt,Colin A. Ellis
出处
期刊:Cold Spring Harbor Laboratory - medRxiv 被引量:2
标识
DOI:10.1101/2023.09.20.23295842
摘要

Abstract Objective Large-language models (LLMs) in healthcare have the potential to propagate existing biases or introduce new ones. For people with epilepsy, social determinants of health are associated with disparities in access to care, but their impact on seizure outcomes among those with access to specialty care remains unclear. Here we (1) evaluated our validated, epilepsy-specific LLM for intrinsic bias, and (2) used LLM-extracted seizure outcomes to test the hypothesis that different demographic groups have different seizure outcomes. Methods First, we tested our LLM for intrinsic bias in the form of differential performance in demographic groups by race, ethnicity, sex, income, and health insurance in manually annotated notes. Next, we used LLM-classified seizure freedom at each office visit to test for outcome disparities in the same demographic groups, using univariable and multivariable analyses. Results We analyzed 84,675 clinic visits from 25,612 patients seen at our epilepsy center 2005-2022. We found no differences in the accuracy, or positive or negative class balance of outcome classifications across demographic groups. Multivariable analysis indicated worse seizure outcomes for female patients (OR 1.33, p = 3x10 -8 ), those with public insurance (OR 1.53, p = 2x10 -13 ), and those from lower-income zip codes (OR ≥ 1.22, p ≤ 6.6x10 -3 ). Black patients had worse outcomes than White patients in univariable but not multivariable analysis (OR 1.03, p = 0.66). Significance We found no evidence that our LLM was intrinsically biased against any demographic group. Seizure freedom extracted by LLM revealed disparities in seizure outcomes across several demographic groups. These findings highlight the critical need to reduce disparities in the care of people with epilepsy. Key Points We used large language models (LLMs) and natural language processing to extract seizure outcomes from clinical note text. We found no evidence of intrinsic bias in the LLM algorithm, in that it performed similarly across all demographic groups. Using LLM-extracted seizure outcomes, female sex, public insurance, and lower income zip- codes were associated with higher likelihood of seizures at each visit. Black race was associated with higher likelihood of seizures in univariable but not multivariable analysis. These findings highlight the critical need to reduce disparities in the care of people with epilepsy.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
清爽老九发布了新的文献求助10
刚刚
AYJ完成签到,获得积分10
1秒前
2秒前
3秒前
anhui发布了新的文献求助10
3秒前
领导范儿应助修仙梅采纳,获得10
3秒前
4秒前
WuMengyao发布了新的文献求助10
4秒前
嘉心糖发布了新的文献求助300
4秒前
WBC完成签到,获得积分20
4秒前
5秒前
深情安青应助顺心成仁采纳,获得10
5秒前
5秒前
兔子发布了新的文献求助10
5秒前
mimimi发布了新的文献求助10
5秒前
脑洞疼应助流年末逝采纳,获得10
5秒前
城北徐公发布了新的文献求助50
6秒前
大模型应助尔多龙采纳,获得10
6秒前
光催完成签到,获得积分10
6秒前
7秒前
调皮的海之完成签到,获得积分10
7秒前
浮游应助谷粱紫槐采纳,获得10
7秒前
异乡人完成签到,获得积分10
7秒前
Boffican发布了新的文献求助10
8秒前
zhonglv7应助勤奋谷梦采纳,获得10
8秒前
悦耳的三毒完成签到,获得积分10
8秒前
科研通AI6应助虾仁炒饭采纳,获得10
9秒前
科研小白发布了新的文献求助10
9秒前
漂亮半兰完成签到,获得积分10
9秒前
10秒前
刻苦惜萍发布了新的文献求助10
11秒前
奋斗灵珊完成签到,获得积分10
11秒前
呆萌的凡完成签到,获得积分10
11秒前
在吃饭的时候吃饭完成签到,获得积分10
11秒前
12秒前
12秒前
漂亮半兰发布了新的文献求助20
12秒前
13秒前
13秒前
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
LRZ Gitlab附件(3D Matching of TerraSAR-X Derived Ground Control Points to Mobile Mapping Data 附件) 2000
TOWARD A HISTORY OF THE PALEOZOIC ASTEROIDEA (ECHINODERMATA) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
AASHTO LRFD Bridge Design Specifications (10th Edition) with 2025 Errata 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5123034
求助须知:如何正确求助?哪些是违规求助? 4327617
关于积分的说明 13484959
捐赠科研通 4161732
什么是DOI,文献DOI怎么找? 2281010
邀请新用户注册赠送积分活动 1282501
关于科研通互助平台的介绍 1221550