亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Disparities in seizure outcomes revealed by large language models

民族 癫痫 专业 医学 卫生公平 医疗保健 考试(生物学) 公共卫生 人口学 家庭医学 心理学 精神科 政治学 古生物学 护理部 社会学 法学 生物
作者
Kevin Xie,William K.S. Ojemann,Ryan S. Gallagher,Alfredo Lucas,Chloé E. Hill,Roy H. Hamilton,Kevin B. Johnson,Dan Roth,Brian Litt,Colin A. Ellis
出处
期刊:Cold Spring Harbor Laboratory - medRxiv 被引量:2
标识
DOI:10.1101/2023.09.20.23295842
摘要

Abstract Objective Large-language models (LLMs) in healthcare have the potential to propagate existing biases or introduce new ones. For people with epilepsy, social determinants of health are associated with disparities in access to care, but their impact on seizure outcomes among those with access to specialty care remains unclear. Here we (1) evaluated our validated, epilepsy-specific LLM for intrinsic bias, and (2) used LLM-extracted seizure outcomes to test the hypothesis that different demographic groups have different seizure outcomes. Methods First, we tested our LLM for intrinsic bias in the form of differential performance in demographic groups by race, ethnicity, sex, income, and health insurance in manually annotated notes. Next, we used LLM-classified seizure freedom at each office visit to test for outcome disparities in the same demographic groups, using univariable and multivariable analyses. Results We analyzed 84,675 clinic visits from 25,612 patients seen at our epilepsy center 2005-2022. We found no differences in the accuracy, or positive or negative class balance of outcome classifications across demographic groups. Multivariable analysis indicated worse seizure outcomes for female patients (OR 1.33, p = 3x10 -8 ), those with public insurance (OR 1.53, p = 2x10 -13 ), and those from lower-income zip codes (OR ≥ 1.22, p ≤ 6.6x10 -3 ). Black patients had worse outcomes than White patients in univariable but not multivariable analysis (OR 1.03, p = 0.66). Significance We found no evidence that our LLM was intrinsically biased against any demographic group. Seizure freedom extracted by LLM revealed disparities in seizure outcomes across several demographic groups. These findings highlight the critical need to reduce disparities in the care of people with epilepsy. Key Points We used large language models (LLMs) and natural language processing to extract seizure outcomes from clinical note text. We found no evidence of intrinsic bias in the LLM algorithm, in that it performed similarly across all demographic groups. Using LLM-extracted seizure outcomes, female sex, public insurance, and lower income zip- codes were associated with higher likelihood of seizures at each visit. Black race was associated with higher likelihood of seizures in univariable but not multivariable analysis. These findings highlight the critical need to reduce disparities in the care of people with epilepsy.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
14秒前
酷波er应助Axel采纳,获得10
23秒前
24秒前
lqhccww发布了新的文献求助30
42秒前
48秒前
田様应助cjh采纳,获得10
1分钟前
奇趣糖完成签到,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
cjh发布了新的文献求助10
1分钟前
1分钟前
仁爱水池发布了新的文献求助10
1分钟前
充电宝应助木辰采纳,获得10
1分钟前
1分钟前
1分钟前
奇趣糖发布了新的文献求助10
1分钟前
1分钟前
Donnie333完成签到,获得积分10
1分钟前
Axel发布了新的文献求助10
1分钟前
2分钟前
Axel完成签到,获得积分10
2分钟前
小黄完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
ding应助cjh采纳,获得10
2分钟前
华仔应助熬夜写论文采纳,获得10
2分钟前
2分钟前
2分钟前
DDD完成签到,获得积分20
2分钟前
瞿霞发布了新的文献求助10
2分钟前
2分钟前
wanci应助DDD采纳,获得10
2分钟前
ding应助瞿霞采纳,获得10
2分钟前
2分钟前
cjh发布了新的文献求助10
2分钟前
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5470054
求助须知:如何正确求助?哪些是违规求助? 4572982
关于积分的说明 14337928
捐赠科研通 4499916
什么是DOI,文献DOI怎么找? 2465449
邀请新用户注册赠送积分活动 1453810
关于科研通互助平台的介绍 1428375