Disparities in seizure outcomes revealed by large language models

民族 癫痫 专业 医学 卫生公平 医疗保健 考试(生物学) 公共卫生 人口学 家庭医学 心理学 精神科 政治学 古生物学 护理部 社会学 法学 生物
作者
Kevin Xie,William K.S. Ojemann,Ryan S. Gallagher,Alfredo Lucas,Chloé E. Hill,Roy H. Hamilton,Kevin B. Johnson,Dan Roth,Brian Litt,Colin A. Ellis
出处
期刊:Cold Spring Harbor Laboratory - medRxiv 被引量:2
标识
DOI:10.1101/2023.09.20.23295842
摘要

Abstract Objective Large-language models (LLMs) in healthcare have the potential to propagate existing biases or introduce new ones. For people with epilepsy, social determinants of health are associated with disparities in access to care, but their impact on seizure outcomes among those with access to specialty care remains unclear. Here we (1) evaluated our validated, epilepsy-specific LLM for intrinsic bias, and (2) used LLM-extracted seizure outcomes to test the hypothesis that different demographic groups have different seizure outcomes. Methods First, we tested our LLM for intrinsic bias in the form of differential performance in demographic groups by race, ethnicity, sex, income, and health insurance in manually annotated notes. Next, we used LLM-classified seizure freedom at each office visit to test for outcome disparities in the same demographic groups, using univariable and multivariable analyses. Results We analyzed 84,675 clinic visits from 25,612 patients seen at our epilepsy center 2005-2022. We found no differences in the accuracy, or positive or negative class balance of outcome classifications across demographic groups. Multivariable analysis indicated worse seizure outcomes for female patients (OR 1.33, p = 3x10 -8 ), those with public insurance (OR 1.53, p = 2x10 -13 ), and those from lower-income zip codes (OR ≥ 1.22, p ≤ 6.6x10 -3 ). Black patients had worse outcomes than White patients in univariable but not multivariable analysis (OR 1.03, p = 0.66). Significance We found no evidence that our LLM was intrinsically biased against any demographic group. Seizure freedom extracted by LLM revealed disparities in seizure outcomes across several demographic groups. These findings highlight the critical need to reduce disparities in the care of people with epilepsy. Key Points We used large language models (LLMs) and natural language processing to extract seizure outcomes from clinical note text. We found no evidence of intrinsic bias in the LLM algorithm, in that it performed similarly across all demographic groups. Using LLM-extracted seizure outcomes, female sex, public insurance, and lower income zip- codes were associated with higher likelihood of seizures at each visit. Black race was associated with higher likelihood of seizures in univariable but not multivariable analysis. These findings highlight the critical need to reduce disparities in the care of people with epilepsy.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
思源应助那都通采纳,获得10
刚刚
刚刚
晓晓发布了新的文献求助10
刚刚
hzs完成签到,获得积分10
1秒前
慕慕发布了新的文献求助10
1秒前
1秒前
1秒前
lrll应助俏皮的若剑采纳,获得50
2秒前
xrL发布了新的文献求助10
2秒前
zwj发布了新的文献求助10
2秒前
3秒前
4秒前
落浪发布了新的文献求助10
4秒前
唐秃完成签到,获得积分10
4秒前
minkuuuuuuu应助yuanshl1985采纳,获得10
5秒前
熄熄发布了新的文献求助10
5秒前
6秒前
茶两完成签到,获得积分20
6秒前
Junlei完成签到,获得积分0
6秒前
mingjie完成签到,获得积分10
7秒前
7秒前
8秒前
wzx完成签到,获得积分10
8秒前
8秒前
小蘑菇应助热心的皮皮虾采纳,获得10
9秒前
科目三应助AA18236931952采纳,获得10
10秒前
量子星尘发布了新的文献求助10
10秒前
dawn发布了新的文献求助10
11秒前
萌~Lucky完成签到,获得积分10
11秒前
酷波er应助something采纳,获得10
11秒前
思源应助zhc采纳,获得10
14秒前
16秒前
搜集达人应助Yan采纳,获得10
16秒前
zz发布了新的文献求助10
17秒前
化工兔完成签到,获得积分10
18秒前
包容草莓关注了科研通微信公众号
18秒前
18秒前
19秒前
Wind应助lunhui6453采纳,获得10
19秒前
熄熄完成签到 ,获得积分10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5530913
求助须知:如何正确求助?哪些是违规求助? 4619898
关于积分的说明 14570675
捐赠科研通 4559413
什么是DOI,文献DOI怎么找? 2498391
邀请新用户注册赠送积分活动 1478380
关于科研通互助平台的介绍 1449913