HAU-Net: Hybrid CNN-transformer for breast ultrasound image segmentation

分割 计算机科学 卷积神经网络 人工智能 变压器 模式识别(心理学) 利用 图像分割 乳腺超声检查 乳腺癌 乳腺摄影术 医学 电压 癌症 内科学 物理 计算机安全 量子力学
作者
Huaikun Zhang,Jing Lian,Zetong Yi,Ruichao Wu,Xiangyu Lu,Pei Ma,Yide Ma
出处
期刊:Biomedical Signal Processing and Control [Elsevier]
卷期号:87: 105427-105427 被引量:31
标识
DOI:10.1016/j.bspc.2023.105427
摘要

Breast cancer is a significant health concern that remains one of the leading causes of mortality in women worldwide. Convolutional Neural Networks (CNNs) have been shown to be effective in ultrasound breast image segmentation. Yet, because of the lack of long-distance dependence, the segmentation performance of CNNs is limited in addressing challenges typical of segmentation of ultrasound breast lesions, such as similar intensity distributions, the presence of irregular objects, and blurred boundaries. In order to overcome these issues, several studies have combined transformers and CNNs, to compensate for the shortcomings of CNNs with the ability of transformers to exploit long-distance dependence. Most of these studies limited themselves to rigidly plug transformer blocks into the CNN, lacking consistency in the process of feature extraction and therefore leading to poor performances in segmenting challenging medical images. In this paper, we propose HAU-Net(hierarchical attention-guided U-Net), a hybrid CNN-transformer framework that benefits from both the long-range dependency of transformers and the local detail representation of CNNs. To incorporate global context information, we introduce a L-G transformer block nested into the skip connections of the U shape architecture network. In addition, to further improve the segmentation performance, we added a cross attention block (CAB) module on the decoder side to allow different layers to interact. Extensive experimental results on three public datasets indicate that the proposed HAU-Net can achieve better performance than other state-of-the-art methods for breast lesions segmentation, with Dice coefficient of 83.11% for BUSI, 88.73% for UDIAT, and 89.48% for BLUI respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Meyako完成签到 ,获得积分0
刚刚
前行的灿发布了新的文献求助20
刚刚
递年完成签到,获得积分10
1秒前
1秒前
欣慰的笑阳完成签到 ,获得积分10
2秒前
暮烟完成签到,获得积分10
2秒前
迷了路的猫完成签到,获得积分10
2秒前
白色的风车完成签到,获得积分10
3秒前
3秒前
万里完成签到,获得积分10
3秒前
3秒前
fang完成签到,获得积分10
4秒前
4秒前
hhh完成签到,获得积分10
5秒前
,。完成签到,获得积分10
5秒前
达雨发布了新的文献求助10
5秒前
领导范儿应助格林采纳,获得10
5秒前
Titi完成签到 ,获得积分10
5秒前
前行的灿发布了新的文献求助10
5秒前
Oil完成签到,获得积分10
5秒前
Leo完成签到,获得积分0
7秒前
平常星星完成签到 ,获得积分10
7秒前
现代宝宝完成签到,获得积分10
8秒前
苗条的紫文完成签到,获得积分10
8秒前
境随心转完成签到,获得积分10
8秒前
结实的洋葱完成签到,获得积分10
9秒前
斯文败类应助gzmejiji采纳,获得10
9秒前
共享精神应助猪头小队长采纳,获得10
10秒前
香蕉觅云应助drughunter009采纳,获得10
10秒前
刘晓丹完成签到,获得积分10
10秒前
Shark完成签到,获得积分10
10秒前
飞想思完成签到,获得积分10
10秒前
夏定海完成签到,获得积分10
11秒前
妮妮完成签到,获得积分10
12秒前
sss完成签到,获得积分10
12秒前
老白完成签到,获得积分10
13秒前
大鹅莓烦恼完成签到,获得积分10
13秒前
13秒前
13秒前
roking完成签到,获得积分10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
Theories in Second Language Acquisition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5568403
求助须知:如何正确求助?哪些是违规求助? 4652961
关于积分的说明 14702698
捐赠科研通 4594773
什么是DOI,文献DOI怎么找? 2521254
邀请新用户注册赠送积分活动 1492932
关于科研通互助平台的介绍 1463735