亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

HAU-Net: Hybrid CNN-transformer for breast ultrasound image segmentation

分割 计算机科学 卷积神经网络 人工智能 变压器 模式识别(心理学) 利用 图像分割 乳腺超声检查 乳腺癌 乳腺摄影术 医学 电压 癌症 内科学 物理 计算机安全 量子力学
作者
Huaikun Zhang,Jing Lian,Zetong Yi,Ruichao Wu,Xiangyu Lu,Pei Ma,Yide Ma
出处
期刊:Biomedical Signal Processing and Control [Elsevier BV]
卷期号:87: 105427-105427 被引量:31
标识
DOI:10.1016/j.bspc.2023.105427
摘要

Breast cancer is a significant health concern that remains one of the leading causes of mortality in women worldwide. Convolutional Neural Networks (CNNs) have been shown to be effective in ultrasound breast image segmentation. Yet, because of the lack of long-distance dependence, the segmentation performance of CNNs is limited in addressing challenges typical of segmentation of ultrasound breast lesions, such as similar intensity distributions, the presence of irregular objects, and blurred boundaries. In order to overcome these issues, several studies have combined transformers and CNNs, to compensate for the shortcomings of CNNs with the ability of transformers to exploit long-distance dependence. Most of these studies limited themselves to rigidly plug transformer blocks into the CNN, lacking consistency in the process of feature extraction and therefore leading to poor performances in segmenting challenging medical images. In this paper, we propose HAU-Net(hierarchical attention-guided U-Net), a hybrid CNN-transformer framework that benefits from both the long-range dependency of transformers and the local detail representation of CNNs. To incorporate global context information, we introduce a L-G transformer block nested into the skip connections of the U shape architecture network. In addition, to further improve the segmentation performance, we added a cross attention block (CAB) module on the decoder side to allow different layers to interact. Extensive experimental results on three public datasets indicate that the proposed HAU-Net can achieve better performance than other state-of-the-art methods for breast lesions segmentation, with Dice coefficient of 83.11% for BUSI, 88.73% for UDIAT, and 89.48% for BLUI respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
14秒前
15秒前
17秒前
18秒前
Dreamer.发布了新的文献求助10
21秒前
25秒前
量子星尘发布了新的文献求助10
35秒前
37秒前
cqhecq发布了新的文献求助10
39秒前
科研通AI2S应助科研通管家采纳,获得10
42秒前
Virtual应助科研通管家采纳,获得10
42秒前
桃欣发布了新的文献求助10
42秒前
桃欣完成签到,获得积分10
55秒前
2分钟前
FashionBoy应助guhuihaozi采纳,获得10
2分钟前
zzz完成签到,获得积分10
2分钟前
深情安青应助Dreamer.采纳,获得10
2分钟前
2分钟前
馆长应助科研通管家采纳,获得10
2分钟前
馆长应助科研通管家采纳,获得10
2分钟前
伏城完成签到 ,获得积分10
2分钟前
共享精神应助王大纯采纳,获得10
3分钟前
王大纯完成签到,获得积分20
3分钟前
3分钟前
量子星尘发布了新的文献求助10
3分钟前
3分钟前
Dreamer.发布了新的文献求助10
3分钟前
汉堡包应助科研实习生采纳,获得10
4分钟前
4分钟前
4分钟前
4分钟前
4分钟前
牛八先生完成签到,获得积分10
4分钟前
烟花应助Dreamer.采纳,获得10
4分钟前
Asura完成签到,获得积分10
4分钟前
4分钟前
RR发布了新的文献求助10
4分钟前
科研通AI2S应助科研通管家采纳,获得30
4分钟前
馆长应助科研通管家采纳,获得10
4分钟前
馆长应助科研通管家采纳,获得10
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4595660
求助须知:如何正确求助?哪些是违规求助? 4007972
关于积分的说明 12408710
捐赠科研通 3686659
什么是DOI,文献DOI怎么找? 2032005
邀请新用户注册赠送积分活动 1065231
科研通“疑难数据库(出版商)”最低求助积分说明 950587