HAU-Net: Hybrid CNN-transformer for breast ultrasound image segmentation

分割 计算机科学 卷积神经网络 人工智能 变压器 模式识别(心理学) 利用 图像分割 乳腺超声检查 乳腺癌 乳腺摄影术 医学 电压 癌症 内科学 物理 计算机安全 量子力学
作者
Huaikun Zhang,Jing Lian,Zetong Yi,Ruichao Wu,Xiangyu Lu,Pei Ma,Yide Ma
出处
期刊:Biomedical Signal Processing and Control [Elsevier]
卷期号:87: 105427-105427 被引量:31
标识
DOI:10.1016/j.bspc.2023.105427
摘要

Breast cancer is a significant health concern that remains one of the leading causes of mortality in women worldwide. Convolutional Neural Networks (CNNs) have been shown to be effective in ultrasound breast image segmentation. Yet, because of the lack of long-distance dependence, the segmentation performance of CNNs is limited in addressing challenges typical of segmentation of ultrasound breast lesions, such as similar intensity distributions, the presence of irregular objects, and blurred boundaries. In order to overcome these issues, several studies have combined transformers and CNNs, to compensate for the shortcomings of CNNs with the ability of transformers to exploit long-distance dependence. Most of these studies limited themselves to rigidly plug transformer blocks into the CNN, lacking consistency in the process of feature extraction and therefore leading to poor performances in segmenting challenging medical images. In this paper, we propose HAU-Net(hierarchical attention-guided U-Net), a hybrid CNN-transformer framework that benefits from both the long-range dependency of transformers and the local detail representation of CNNs. To incorporate global context information, we introduce a L-G transformer block nested into the skip connections of the U shape architecture network. In addition, to further improve the segmentation performance, we added a cross attention block (CAB) module on the decoder side to allow different layers to interact. Extensive experimental results on three public datasets indicate that the proposed HAU-Net can achieve better performance than other state-of-the-art methods for breast lesions segmentation, with Dice coefficient of 83.11% for BUSI, 88.73% for UDIAT, and 89.48% for BLUI respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zho发布了新的文献求助10
刚刚
野性的柠檬完成签到,获得积分10
刚刚
研友_8o5V2n发布了新的文献求助10
1秒前
QJZ完成签到 ,获得积分10
1秒前
溜溜梅发布了新的文献求助10
1秒前
球球完成签到,获得积分10
2秒前
LEETHEO发布了新的文献求助10
2秒前
2秒前
2秒前
彭于晏应助75986686采纳,获得10
2秒前
3秒前
领导范儿应助WGS采纳,获得10
3秒前
3秒前
Jian完成签到 ,获得积分10
4秒前
hh完成签到 ,获得积分10
5秒前
研友_VZG7GZ应助Mojito采纳,获得10
6秒前
6秒前
7秒前
多情山蝶发布了新的文献求助10
7秒前
8秒前
量子星尘发布了新的文献求助10
8秒前
wsy完成签到,获得积分10
9秒前
今夜明珠色应助Liu采纳,获得30
9秒前
乐尤琉完成签到,获得积分10
10秒前
10秒前
小蘑菇应助党阳阳采纳,获得10
10秒前
11秒前
11秒前
11秒前
史克珍香完成签到 ,获得积分10
12秒前
AIDA完成签到,获得积分10
12秒前
斯文败类应助Guzaiya采纳,获得10
13秒前
gavin完成签到 ,获得积分10
14秒前
飞快的从彤完成签到 ,获得积分20
14秒前
茶米发布了新的文献求助10
15秒前
脱羰甲酸发布了新的文献求助10
16秒前
hhdegf发布了新的文献求助10
18秒前
18秒前
科目三应助ldp采纳,获得10
19秒前
研友_8o5V2n完成签到,获得积分10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Teaching Language in Context (Third Edition) 1000
Identifying dimensions of interest to support learning in disengaged students: the MINE project 1000
Introduction to Early Childhood Education 1000
List of 1,091 Public Pension Profiles by Region 921
Aerospace Standards Index - 2025 800
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5436097
求助须知:如何正确求助?哪些是违规求助? 4548199
关于积分的说明 14212530
捐赠科研通 4468375
什么是DOI,文献DOI怎么找? 2448993
邀请新用户注册赠送积分活动 1439942
关于科研通互助平台的介绍 1416594