HAU-Net: Hybrid CNN-transformer for breast ultrasound image segmentation

分割 计算机科学 卷积神经网络 人工智能 变压器 模式识别(心理学) 利用 图像分割 乳腺超声检查 乳腺癌 乳腺摄影术 癌症 计算机安全 内科学 物理 医学 量子力学 电压
作者
Huaikun Zhang,Jing Lian,Zetong Yi,Ruichao Wu,Xiangyu Lǚ,Pei Ma,Yide Ma
出处
期刊:Biomedical Signal Processing and Control [Elsevier]
卷期号:87: 105427-105427 被引量:9
标识
DOI:10.1016/j.bspc.2023.105427
摘要

Breast cancer is a significant health concern that remains one of the leading causes of mortality in women worldwide. Convolutional Neural Networks (CNNs) have been shown to be effective in ultrasound breast image segmentation. Yet, because of the lack of long-distance dependence, the segmentation performance of CNNs is limited in addressing challenges typical of segmentation of ultrasound breast lesions, such as similar intensity distributions, the presence of irregular objects, and blurred boundaries. In order to overcome these issues, several studies have combined transformers and CNNs, to compensate for the shortcomings of CNNs with the ability of transformers to exploit long-distance dependence. Most of these studies limited themselves to rigidly plug transformer blocks into the CNN, lacking consistency in the process of feature extraction and therefore leading to poor performances in segmenting challenging medical images. In this paper, we propose HAU-Net(hierarchical attention-guided U-Net), a hybrid CNN-transformer framework that benefits from both the long-range dependency of transformers and the local detail representation of CNNs. To incorporate global context information, we introduce a L-G transformer block nested into the skip connections of the U shape architecture network. In addition, to further improve the segmentation performance, we added a cross attention block (CAB) module on the decoder side to allow different layers to interact. Extensive experimental results on three public datasets indicate that the proposed HAU-Net can achieve better performance than other state-of-the-art methods for breast lesions segmentation, with Dice coefficient of 83.11% for BUSI, 88.73% for UDIAT, and 89.48% for BLUI respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
.。。发布了新的文献求助10
1秒前
1秒前
Lucas发布了新的文献求助10
1秒前
clytze应助是滴是滴采纳,获得10
1秒前
2秒前
天天快乐应助眼睛大水蓝采纳,获得20
2秒前
冷夏发布了新的文献求助10
3秒前
叶子宁完成签到,获得积分10
3秒前
上进生发布了新的文献求助10
4秒前
zwr19920222cc完成签到,获得积分20
4秒前
共享精神应助ccxb1014ft采纳,获得10
4秒前
Xn关注了科研通微信公众号
4秒前
今后应助科研通管家采纳,获得10
5秒前
CodeCraft应助科研通管家采纳,获得10
5秒前
5秒前
大模型应助科研通管家采纳,获得10
5秒前
書架应助科研通管家采纳,获得10
5秒前
小蘑菇应助科研通管家采纳,获得10
5秒前
搜集达人应助科研通管家采纳,获得10
5秒前
酷波er应助futing采纳,获得10
5秒前
斯文败类应助科研通管家采纳,获得10
6秒前
xxwxx应助执着菀采纳,获得10
6秒前
科研通AI2S应助科研通管家采纳,获得10
6秒前
英姑应助科研通管家采纳,获得10
6秒前
在水一方应助科研通管家采纳,获得10
6秒前
6秒前
6秒前
7秒前
玉衡发布了新的文献求助10
7秒前
千早爱音完成签到 ,获得积分10
7秒前
子车茗应助dd采纳,获得10
8秒前
小龅牙吖完成签到,获得积分20
8秒前
8秒前
8秒前
协和小飞龙完成签到,获得积分10
8秒前
自信谷冬完成签到 ,获得积分10
9秒前
9秒前
11秒前
aristy完成签到,获得积分10
11秒前
wanci应助曾经二娘采纳,获得10
11秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3156450
求助须知:如何正确求助?哪些是违规求助? 2807921
关于积分的说明 7875266
捐赠科研通 2466226
什么是DOI,文献DOI怎么找? 1312727
科研通“疑难数据库(出版商)”最低求助积分说明 630255
版权声明 601919