HAU-Net: Hybrid CNN-transformer for breast ultrasound image segmentation

分割 计算机科学 卷积神经网络 人工智能 变压器 模式识别(心理学) 利用 图像分割 乳腺超声检查 乳腺癌 乳腺摄影术 医学 电压 癌症 内科学 物理 计算机安全 量子力学
作者
Huaikun Zhang,Jing Lian,Zetong Yi,Ruichao Wu,Xiangyu Lu,Pei Ma,Yide Ma
出处
期刊:Biomedical Signal Processing and Control [Elsevier]
卷期号:87: 105427-105427 被引量:31
标识
DOI:10.1016/j.bspc.2023.105427
摘要

Breast cancer is a significant health concern that remains one of the leading causes of mortality in women worldwide. Convolutional Neural Networks (CNNs) have been shown to be effective in ultrasound breast image segmentation. Yet, because of the lack of long-distance dependence, the segmentation performance of CNNs is limited in addressing challenges typical of segmentation of ultrasound breast lesions, such as similar intensity distributions, the presence of irregular objects, and blurred boundaries. In order to overcome these issues, several studies have combined transformers and CNNs, to compensate for the shortcomings of CNNs with the ability of transformers to exploit long-distance dependence. Most of these studies limited themselves to rigidly plug transformer blocks into the CNN, lacking consistency in the process of feature extraction and therefore leading to poor performances in segmenting challenging medical images. In this paper, we propose HAU-Net(hierarchical attention-guided U-Net), a hybrid CNN-transformer framework that benefits from both the long-range dependency of transformers and the local detail representation of CNNs. To incorporate global context information, we introduce a L-G transformer block nested into the skip connections of the U shape architecture network. In addition, to further improve the segmentation performance, we added a cross attention block (CAB) module on the decoder side to allow different layers to interact. Extensive experimental results on three public datasets indicate that the proposed HAU-Net can achieve better performance than other state-of-the-art methods for breast lesions segmentation, with Dice coefficient of 83.11% for BUSI, 88.73% for UDIAT, and 89.48% for BLUI respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6应助xia采纳,获得30
1秒前
舒心半梦发布了新的文献求助10
2秒前
欢欢发布了新的文献求助10
2秒前
All_fly发布了新的文献求助10
3秒前
weimin关注了科研通微信公众号
4秒前
April发布了新的文献求助10
4秒前
7秒前
舒适梨愁发布了新的文献求助10
7秒前
汉堡包应助刻苦羽毛采纳,获得30
9秒前
浮游应助XL神放采纳,获得10
9秒前
科研通AI6应助he采纳,获得10
10秒前
量子星尘发布了新的文献求助10
10秒前
10秒前
11秒前
酷波er应助小路采纳,获得10
11秒前
江楠发布了新的文献求助10
11秒前
超级Huan完成签到,获得积分10
11秒前
zhangzhaoxin完成签到,获得积分10
11秒前
tt驳回了cc应助
12秒前
酱酱完成签到,获得积分10
12秒前
12秒前
答案加载中完成签到 ,获得积分10
14秒前
雷家发布了新的文献求助10
14秒前
xn201120发布了新的文献求助10
15秒前
15秒前
16秒前
深情安青应助养生坤坤采纳,获得10
16秒前
汉堡包应助赵浩楠采纳,获得10
17秒前
18秒前
18秒前
缥缈橘子发布了新的文献求助10
18秒前
阳光谷完成签到,获得积分10
18秒前
美好的冰蓝完成签到 ,获得积分10
19秒前
lixiaorui发布了新的文献求助10
20秒前
科研通AI6应助江楠采纳,获得10
21秒前
酷波er应助雨雨爱薯条采纳,获得10
21秒前
852应助qq采纳,获得10
21秒前
22秒前
阳光谷发布了新的文献求助10
22秒前
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Washback Research in Language Assessment:Fundamentals and Contexts 400
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5469432
求助须知:如何正确求助?哪些是违规求助? 4572532
关于积分的说明 14336014
捐赠科研通 4499397
什么是DOI,文献DOI怎么找? 2465032
邀请新用户注册赠送积分活动 1453564
关于科研通互助平台的介绍 1428091