Machine learning-based prediction of in-hospital mortality in patients with pneumonic chronic obstructive pulmonary disease exacerbations

医学 接收机工作特性 慢性阻塞性肺病 随机森林 置信区间 Lasso(编程语言) 预测建模 内科学 肺病 范畴变量 曲线下面积 急诊医学 机器学习 万维网 计算机科学
作者
Yu Lin,Xia Ruan,Wenbo Huang,Na Huang,Jun Zeng,Jie He,Rong He,Kai Yang
出处
期刊:Journal of Asthma [Taylor & Francis]
卷期号:61 (3): 212-221
标识
DOI:10.1080/02770903.2023.2263071
摘要

AbstractObjective While linear regression and LASSO models have been established for predicting in-hospital mortality, there is currently no validated clinical prediction algorithm to predict in-hospital mortality for patients with chronic obstructive pulmonary disease (COPD) exacerbations using machine learning. Thus, we will evaluate the BAP-65 and CURB-65, and construct a novel prediction model using the random forest (RF) technique.Methods A dataset of 1,418 patients with COPD exacerbations was collected. Age, gender, mental status, vital signs, and laboratory results were all taken into account for predictors. The categorical outcome variable was hospital-based mortality of people over 65 years. The dataset was divided randomly into a training dataset (70%) and a testing dataset (30%). We trained three prediction models, BAP-65, CURB-65, and the RF model, estimated the area under the receiver operating characteristic curve (AUROC) for the entire dataset. We also conducted a comparison of the AUROC values using the Delong test.Results A total of 658 individuals with COPD acute exacerbations were enrolled. Our analysis using the receiver operating characteristic curve demonstrated that the RF model exhibited excellent performance, with an AUROC of 0.80 (95% confidence interval: 0.75-0.84). In comparison, the BAP-65 prediction model yielded an AUROC of 0.72 (0.68-0.75), while the CURB-65 prediction model achieved an AUROC of 0.69 (0.67-0.73).Conclusions The RF model demonstrated superior predictive capabilities than the BAP-65 and CURB-65 models in predicting in-hospital mortality. The results further highlighted significant factors for predicting in-hospital mortality, including blood eosinophil count, systolic blood pressure, and prior history of asthma.Keywords: Chronic obstructive pulmonary diseasemachine learningrandom forestmortality AcknowledgmentThis manuscript was edited by Changsha Shiyu Translation Service Co., Ltd.Declaration of interestThe authors declare there is no Complete of Interest at this study.Research ethics approvalThis study was approved by the research ethics committee of Chengdu Secondary People’s Hospital (2022CYFYIRB-BZ).Patient and public involvementThis study will not have any patient or public involvement.Author contributionsLY, XR, WH, NH, JZ, JH, RH, and KY all contributed to the work’s conception and design. WH assisted with data collection. LY, KY, NH, JZ, JH, RH, and KY assisted in data analysis and interpretation. LY and XR wrote the manuscript. The text was edited and approved by all authors. KY was responsible to hold all the authors accountable for every aspects of the task.Data sharingThe complete datasets used to train and evaluate the ML algorithms include personal information and are not publicly available. We provided a sample dataset used for model training and it could be found in supplemental material. Researchers interested in obtaining the complete data for research reasons can contact Mr. Wenbo Huang (19435061@life.hkbu.edu.hk).Code availabilityThe statistical coding and machine learning methods used in this study will be made available to the author upon reasonable request.Disclosure statementNo potential conflict of interest was reported by the authors.Additional informationFundingThis work was supported by the Applied Basic Research of Sichuan Department of Science and Technology (2021YJ0470), the Youth Innovation Project of Sichuan Medical Association (Q17025).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
鲜艳的访风完成签到,获得积分10
3秒前
3秒前
Jhinnnn完成签到,获得积分10
4秒前
5秒前
敬老院N号应助最爱吃火锅采纳,获得30
9秒前
9秒前
10秒前
小枣完成签到,获得积分10
10秒前
量子星尘发布了新的文献求助10
10秒前
12秒前
快乐的胖子应助小黑马采纳,获得20
12秒前
大熊发布了新的文献求助10
13秒前
13秒前
孤独聪健完成签到,获得积分10
14秒前
14秒前
至幸给至幸的求助进行了留言
15秒前
YAO完成签到,获得积分10
16秒前
17秒前
gaogao292发布了新的文献求助10
17秒前
17秒前
脑洞疼应助游一采纳,获得10
17秒前
17秒前
Akim应助啦啦啦啦啦采纳,获得10
18秒前
18秒前
莫莫莫完成签到 ,获得积分10
19秒前
阿斯台德完成签到,获得积分10
19秒前
乌力吉发布了新的文献求助10
20秒前
李小喵发布了新的文献求助10
21秒前
余健发布了新的文献求助10
22秒前
在水一方应助大熊采纳,获得10
22秒前
努力搞科研完成签到,获得积分10
23秒前
24秒前
纯真小笼包关注了科研通微信公众号
24秒前
hahhhah完成签到 ,获得积分10
25秒前
彭于晏应助李冯程采纳,获得10
26秒前
26秒前
魔幻巨人完成签到,获得积分10
26秒前
SYLH应助精明的寒天采纳,获得20
26秒前
鸽子完成签到,获得积分10
28秒前
FashionBoy应助乌力吉采纳,获得10
28秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979788
求助须知:如何正确求助?哪些是违规求助? 3523806
关于积分的说明 11218898
捐赠科研通 3261339
什么是DOI,文献DOI怎么找? 1800544
邀请新用户注册赠送积分活动 879177
科研通“疑难数据库(出版商)”最低求助积分说明 807182