Machine learning-based prediction of in-hospital mortality in patients with pneumonic chronic obstructive pulmonary disease exacerbations

医学 接收机工作特性 慢性阻塞性肺病 随机森林 置信区间 Lasso(编程语言) 预测建模 内科学 肺病 范畴变量 曲线下面积 急诊医学 机器学习 万维网 计算机科学
作者
Yu Lin,Xia Ruan,Wenbo Huang,Na Huang,Jun Zeng,Jie He,Rong He,Kai Yang
出处
期刊:Journal of Asthma [Informa]
卷期号:61 (3): 212-221
标识
DOI:10.1080/02770903.2023.2263071
摘要

AbstractObjective While linear regression and LASSO models have been established for predicting in-hospital mortality, there is currently no validated clinical prediction algorithm to predict in-hospital mortality for patients with chronic obstructive pulmonary disease (COPD) exacerbations using machine learning. Thus, we will evaluate the BAP-65 and CURB-65, and construct a novel prediction model using the random forest (RF) technique.Methods A dataset of 1,418 patients with COPD exacerbations was collected. Age, gender, mental status, vital signs, and laboratory results were all taken into account for predictors. The categorical outcome variable was hospital-based mortality of people over 65 years. The dataset was divided randomly into a training dataset (70%) and a testing dataset (30%). We trained three prediction models, BAP-65, CURB-65, and the RF model, estimated the area under the receiver operating characteristic curve (AUROC) for the entire dataset. We also conducted a comparison of the AUROC values using the Delong test.Results A total of 658 individuals with COPD acute exacerbations were enrolled. Our analysis using the receiver operating characteristic curve demonstrated that the RF model exhibited excellent performance, with an AUROC of 0.80 (95% confidence interval: 0.75-0.84). In comparison, the BAP-65 prediction model yielded an AUROC of 0.72 (0.68-0.75), while the CURB-65 prediction model achieved an AUROC of 0.69 (0.67-0.73).Conclusions The RF model demonstrated superior predictive capabilities than the BAP-65 and CURB-65 models in predicting in-hospital mortality. The results further highlighted significant factors for predicting in-hospital mortality, including blood eosinophil count, systolic blood pressure, and prior history of asthma.Keywords: Chronic obstructive pulmonary diseasemachine learningrandom forestmortality AcknowledgmentThis manuscript was edited by Changsha Shiyu Translation Service Co., Ltd.Declaration of interestThe authors declare there is no Complete of Interest at this study.Research ethics approvalThis study was approved by the research ethics committee of Chengdu Secondary People’s Hospital (2022CYFYIRB-BZ).Patient and public involvementThis study will not have any patient or public involvement.Author contributionsLY, XR, WH, NH, JZ, JH, RH, and KY all contributed to the work’s conception and design. WH assisted with data collection. LY, KY, NH, JZ, JH, RH, and KY assisted in data analysis and interpretation. LY and XR wrote the manuscript. The text was edited and approved by all authors. KY was responsible to hold all the authors accountable for every aspects of the task.Data sharingThe complete datasets used to train and evaluate the ML algorithms include personal information and are not publicly available. We provided a sample dataset used for model training and it could be found in supplemental material. Researchers interested in obtaining the complete data for research reasons can contact Mr. Wenbo Huang (19435061@life.hkbu.edu.hk).Code availabilityThe statistical coding and machine learning methods used in this study will be made available to the author upon reasonable request.Disclosure statementNo potential conflict of interest was reported by the authors.Additional informationFundingThis work was supported by the Applied Basic Research of Sichuan Department of Science and Technology (2021YJ0470), the Youth Innovation Project of Sichuan Medical Association (Q17025).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小蘑菇应助聂学雨采纳,获得10
刚刚
哈哈哈哈完成签到,获得积分10
1秒前
zzt完成签到,获得积分10
3秒前
7秒前
LPVV完成签到,获得积分10
8秒前
10秒前
聂学雨发布了新的文献求助10
12秒前
可爱的函函应助南宫若翠采纳,获得10
14秒前
清秀成威发布了新的文献求助10
15秒前
灵巧的十八完成签到 ,获得积分10
16秒前
16秒前
姜宁完成签到,获得积分20
17秒前
幸福胡萝卜完成签到,获得积分10
17秒前
千亦应助八森木采纳,获得20
20秒前
哎呀发布了新的文献求助10
20秒前
songjin完成签到 ,获得积分10
21秒前
22秒前
SaturnY完成签到,获得积分10
23秒前
清秀成威完成签到,获得积分10
23秒前
24秒前
乐乐应助顺心绮兰采纳,获得10
29秒前
30秒前
脑洞疼应助卫化蛹采纳,获得10
31秒前
31秒前
Yep0672发布了新的文献求助10
31秒前
32秒前
32秒前
在水一方应助闪闪灵雁采纳,获得10
34秒前
34秒前
平头哥哥完成签到 ,获得积分10
35秒前
35秒前
顺利毕业发布了新的文献求助10
35秒前
36秒前
lili完成签到,获得积分10
36秒前
SciGPT应助快乐的一刀采纳,获得10
38秒前
豆子发布了新的文献求助10
39秒前
Fann发布了新的文献求助10
39秒前
42秒前
zhinian28完成签到,获得积分10
45秒前
evilbatuu完成签到,获得积分10
47秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3135044
求助须知:如何正确求助?哪些是违规求助? 2786005
关于积分的说明 7774726
捐赠科研通 2441825
什么是DOI,文献DOI怎么找? 1298217
科研通“疑难数据库(出版商)”最低求助积分说明 625088
版权声明 600825