Improving the accuracy of noninvasive prenatal testing through size‐selection between fetal and maternal cfDNA

医学 中心(范畴论) 基因组 生物 遗传学 结晶学 化学 基因
作者
Hyuk‐Jung Kwon,Seon-young Yun,Joungsu Joo,Dabin Park,Woo‐Jung Do,Sunghoon Lee,Min‐Seob Lee
出处
期刊:Prenatal Diagnosis [Wiley]
卷期号:43 (13): 1581-1592
标识
DOI:10.1002/pd.6464
摘要

Prenatal DiagnosisVolume 43, Issue 13 p. 1581-1592 ORIGINAL ARTICLE Improving the accuracy of noninvasive prenatal testing through size-selection between fetal and maternal cfDNA Hyuk-Jung Kwon, Hyuk-Jung Kwon orcid.org/0000-0001-7005-6999 R&D Department, Eone-Diagnomics Genome Center, Incheon, Republic of KoreaSearch for more papers by this authorSeonyoung Yun, Seonyoung Yun R&D Department, Eone-Diagnomics Genome Center, Incheon, Republic of KoreaSearch for more papers by this authorJoungsu Joo, Joungsu Joo R&D Department, Eone-Diagnomics Genome Center, Incheon, Republic of KoreaSearch for more papers by this authorDabin Park, Dabin Park R&D Department, Eone-Diagnomics Genome Center, Incheon, Republic of KoreaSearch for more papers by this authorWoo-Jung Do, Woo-Jung Do R&D Department, Eone-Diagnomics Genome Center, Incheon, Republic of KoreaSearch for more papers by this authorSunghoon Lee, Sunghoon Lee R&D Department, Eone-Diagnomics Genome Center, Incheon, Republic of KoreaSearch for more papers by this authorMin-Seob Lee, Corresponding Author Min-Seob Lee [email protected] R&D Department, Eone-Diagnomics Genome Center, Incheon, Republic of Korea Diagnomics, San Diego, California, USA Correspondence Min-Seob Lee, Eone-Diagnomics Genome Center, Inc., 143 Gaetbeol-ro, Yeonsu-gu, Incheon 21999, Republic of Korea. Email: [email protected]Search for more papers by this author Hyuk-Jung Kwon, Hyuk-Jung Kwon orcid.org/0000-0001-7005-6999 R&D Department, Eone-Diagnomics Genome Center, Incheon, Republic of KoreaSearch for more papers by this authorSeonyoung Yun, Seonyoung Yun R&D Department, Eone-Diagnomics Genome Center, Incheon, Republic of KoreaSearch for more papers by this authorJoungsu Joo, Joungsu Joo R&D Department, Eone-Diagnomics Genome Center, Incheon, Republic of KoreaSearch for more papers by this authorDabin Park, Dabin Park R&D Department, Eone-Diagnomics Genome Center, Incheon, Republic of KoreaSearch for more papers by this authorWoo-Jung Do, Woo-Jung Do R&D Department, Eone-Diagnomics Genome Center, Incheon, Republic of KoreaSearch for more papers by this authorSunghoon Lee, Sunghoon Lee R&D Department, Eone-Diagnomics Genome Center, Incheon, Republic of KoreaSearch for more papers by this authorMin-Seob Lee, Corresponding Author Min-Seob Lee [email protected] R&D Department, Eone-Diagnomics Genome Center, Incheon, Republic of Korea Diagnomics, San Diego, California, USA Correspondence Min-Seob Lee, Eone-Diagnomics Genome Center, Inc., 143 Gaetbeol-ro, Yeonsu-gu, Incheon 21999, Republic of Korea. Email: [email protected]Search for more papers by this author First published: 17 November 2023 https://doi.org/10.1002/pd.6464Read the full textAboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onEmailFacebookTwitterLinkedInRedditWechat Abstract Objectives In general, fetal cfDNA is shorter than maternal cfDNA, and accuracy of noninvasive prenatal testing (NIPT) results can be improved by selecting shorter cfDNA fragments to enrich fetal-derived cfDNA. This study investigated potential improvements in the accuracy of NIPT by performing classification and analysis based on differences in cfDNA size. Methods We performed paired-end sequencing to identify size ranges of fetal and maternal cfDNA from 62,374 pregnant women. We then developed a size-selection method to isolate and analyze both fetal and maternal cfDNA, defining fetal-derived cfDNA as less than 150 bp and maternal-derived cfDNA as greater than 180 bp. Results By implementing size-selection method, the accuracy of NIPT was improved, resulting in an increase in the overall positive predictive value for all aneuploidies from 89.57% to 97.1%. This was achieved by enriching both fetal and maternal-derived cfDNA, which increased fetal DNA fraction while the number of false positives for all aneuploidies was reduced by more than 70%. Conclusions We identified the differences in read length between fetal and maternal-derived cfDNA, and selectively enriched both shorter and longer cfDNA fragments for subsequent analysis. Our approach can increase the detection accuracy of NIPT for detecting fetal aneuploidies and reduce the number of false positives caused by maternal chromosomal abnormalities. CONFLICT OF INTEREST STATEMENT All authors declare that there are no conflicts of interest. Open Research DATA AVAILABILITY STATEMENT Data sharing is not applicable to this article as no new data were created or analyzed in this study. Supporting Information Filename Description pd6464-sup-0001-suppl-data.docx231.1 KB Supporting Information S1 Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article. REFERENCES 1Lo YM, Corbetta N, Chamberlain PF, et al. Presence of fetal DNA in maternal plasma and serum. Lancet. 1997; 350(9076): 485-487. https://doi.org/10.1016/s0140-6736(97)02174-0 10.1016/S0140-6736(97)02174-0 CASPubMedWeb of Science®Google Scholar 2Zhang B, Lu BY, Yu B, et al. Noninvasive prenatal screening for fetal common sex chromosome aneuploidies from maternal blood. J Int Med Res. 2017; 45(2): 621-630. https://doi.org/10.1177/0300060517695008 10.1177/0300060517695008 CASPubMedWeb of Science®Google Scholar 3Yu B, Lu BY, Zhang B, et al. Overall evaluation of the clinical value of prenatal screening for fetal-free DNA in maternal blood. Med (Baltim). 2017; 96(27):e7114. https://doi.org/10.1097/md.0000000000007114 10.1097/MD.0000000000007114 CASPubMedWeb of Science®Google Scholar 4Porreco RP, Garite TJ, Maurel K, et al. Noninvasive prenatal screening for fetal trisomies 21, 18, 13 and the common sex chromosome aneuploidies from maternal blood using massively parallel genomic sequencing of DNA. Am J Obstet Gynecol. 2014; 211(6): 711-712. https://doi.org/10.1016/j.ajog.2014.07.015 10.1016/j.ajog.2014.07.015 Web of Science®Google Scholar 5Bianchi DW, Wilkins-Haug L. Integration of noninvasive DNA testing for aneuploidy into prenatal care: what has happened since the rubber met the road? Clin Chem. 2014; 60(1): 78-87. https://doi.org/10.1373/clinchem.2013.202663 10.1373/clinchem.2013.202663 CASPubMedWeb of Science®Google Scholar 6Canick JA, Palomaki GE, Kloza EM, Lambert-Messerlian GM, Haddow JE. The impact of maternal plasma DNA fetal fraction on next generation sequencing tests for common fetal aneuploidies. Prenat Diagn. 2013; 33(7): 667-674. https://doi.org/10.1002/pd.4126 10.1002/pd.4126 CASPubMedWeb of Science®Google Scholar 7Ashoor G, Syngelaki A, Poon LCY, Rezende JC, Nicolaides KH. Fetal fraction in maternal plasma cell-free DNA at 11-13 weeks’ gestation: relation to maternal and fetal characteristics. Ultrasound Obstet Gynecol. 2013; 41(1): 26-32. https://doi.org/10.1002/uog.12331 10.1002/uog.12331 CASPubMedWeb of Science®Google Scholar 8Wang E, Batey A, Struble C, Musci T, Song K, Oliphant A. Gestational age and maternal weight effects on fetal cell-free DNA in maternal plasma. Prenat Diagn. 2013; 33(7): 662-666. https://doi.org/10.1002/pd.4119 10.1002/pd.4119 CASPubMedWeb of Science®Google Scholar 9Fernando MR, Chen K, Norton S, et al. A new methodology to preserve the original proportion and integrity of cell-free fetal DNA in maternal plasma during sample processing and storage. Prenat Diagn. 2010; 30(5): 418-424. https://doi.org/10.1002/pd.2484 10.1002/pd.2484 CASPubMedWeb of Science®Google Scholar 10Barrett AN, Zimmermann BG, Wang D, Holloway A, Chitty LS. Implementing prenatal diagnosis based on cell-free fetal DNA: accurate identification of factors affecting fetal DNA yield. PLos One. 2011; 6(10):e25202. https://doi.org/10.1371/journal.pone.0025202 10.1371/journal.pone.0025202 PubMedWeb of Science®Google Scholar 11Bianchi DW, Chudova D, Sehnert AJ, et al. Noninvasive prenatal testing and incidental detection of occult maternal malignancies. JAMA. 2015; 314(2): 162-169. https://doi.org/10.1001/jama.2015.7120 10.1001/jama.2015.7120 CASPubMedWeb of Science®Google Scholar 12Wang Y, Chen Y, Tian F, et al. Maternal mosaicism is a significant contributor to discordant sex chromosomal aneuploidies associated with noninvasive prenatal testing. Clin Chem. 2014; 60(1): 251-259. https://doi.org/10.1373/clinchem.2013.215145 10.1373/clinchem.2013.215145 CASPubMedWeb of Science®Google Scholar 13Flori E, Doray B, Gautier E, et al. Circulating cell-free fetal DNA in maternal serum appears to originate from cyto- and syncytio-trophoblastic cells. Case report. Hum Reprod. 2004; 19(3): 723-724. https://doi.org/10.1093/humrep/deh117 10.1093/humrep/deh117 CASPubMedWeb of Science®Google Scholar 14Faas BHW, de Ligt J, Janssen I, et al. Non-invasive prenatal diagnosis of fetal aneuploidies using massively parallel sequencing-by-ligation and evidence that cell-free fetal DNA in the maternal plasma originates from cytotrophoblastic cells. Expet Opin Biol Ther. 2012; 12(Suppl 1): S19-S26. https://doi.org/10.1517/14712598.2012.670632 10.1517/14712598.2012.670632 CASPubMedWeb of Science®Google Scholar 15Srebniak MI, Diderich KE, Noomen P, Dijkman A, de Vries FAT, van Opstal D. Abnormal non-invasive prenatal test results concordant with karyotype of cytotrophoblast but not reflecting abnormal fetal karyotype. Ultrasound Obstet Gynecol. 2014; 44(1): 109-111. https://doi.org/10.1002/uog.13334 10.1002/uog.13334 CASPubMedWeb of Science®Google Scholar 16van den Berg C, Van Opstal D, Brandenburg H, et al. Accuracy of abnormal karyotypes after the analysis of both short- and long-term culture of chorionic villi. Prenat Diagn. 2000; 20(12): 956-969. https://doi.org/10.1002/1097-0223(200012)20:12<956::aid-pd956>3.0.co;2-y 10.1002/1097-0223(200012)20:12<956::AID-PD956>3.0.CO;2-Y PubMedWeb of Science®Google Scholar 17Pittalis MC, Dalprà L, Torricelli F, et al. The predictive value of cytogenetic diagnosis after CVS based on 4860 cases with both direct and culture methods. Prenat Diagn. 1994; 14(4): 267-278. https://doi.org/10.1002/pd.1970140406 10.1002/pd.1970140406 CASPubMedWeb of Science®Google Scholar 18Kalousek DK, Barrett I. Confined placental mosaicism and stillbirth. Pediatr Pathol. 1994; 14(1): 151-159. https://doi.org/10.3109/15513819409022034 10.3109/15513819409022034 CASPubMedGoogle Scholar 19Battaglia P, Baroncini A, Mattarozzi A, et al. Cytogenetic follow-up of chromosomal mosaicism detected in first-trimester prenatal diagnosis. Prenat Diagn. 2014; 34(8): 739-747. https://doi.org/10.1002/pd.4358 10.1002/pd.4358 PubMedWeb of Science®Google Scholar 20Wolstenholme J, Evans J, English CA. A 45,X fetus with false-negative 46,XX findings in CVS. Prenat Diagn. 2008; 28(3): 266-267. https://doi.org/10.1002/pd.1961 10.1002/pd.1961 CASPubMedWeb of Science®Google Scholar 21Grati FR, Malvestiti F, Ferreira JC, et al. Fetoplacental mosaicism: potential implications for false-positive and false-negative noninvasive prenatal screening results. Genet Med. 2014; 16(8): 620-624. https://doi.org/10.1038/gim.2014.3 10.1038/gim.2014.3 PubMedWeb of Science®Google Scholar 22Chan KCA, Zhang J, Hui AB, et al. Size distributions of maternal and fetal DNA in maternal plasma. Clin Chem. 2004; 50(1): 88-92. https://doi.org/10.1373/clinchem.2003.024893 10.1373/clinchem.2003.024893 CASPubMedWeb of Science®Google Scholar 23Lo YMD, Chan KC, Sun H, et al. Maternal plasma DNA sequencing reveals the genome-wide genetic and mutational profile of the fetus. Sci Transl Med. 2010; 2(61):61ra91. https://doi.org/10.1126/scitranslmed.3001720 10.1126/scitranslmed.3001720 CASPubMedWeb of Science®Google Scholar 24He QZ, Wu XJ, He QY, et al. A method for improving the accuracy of non-invasive prenatal screening by cell-free foetal DNA size selection. Br J Biomed Sci. 2018; 75(3): 133-138. https://doi.org/10.1080/09674845.2018.1468152 10.1080/09674845.2018.1468152 CASPubMedWeb of Science®Google Scholar 25Fan HC, Blumenfeld YJ, Chitkara U, Hudgins L, Quake SR. Analysis of the size distributions of fetal and maternal cell-free DNA by paired-end sequencing. Clin Chem. 2010; 56(8): 1279-1286. https://doi.org/10.1373/clinchem.2010.144188 10.1373/clinchem.2010.144188 CASPubMedWeb of Science®Google Scholar 26Russell LM, Strike P, Browne CE, Jacobs P. X chromosome loss and ageing. Cytogenet Genome Res. 2007; 116(3): 181-185. https://doi.org/10.1159/000098184 10.1159/000098184 CASPubMedWeb of Science®Google Scholar 27Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics. 2009; 25(14): 1754-1760. https://doi.org/10.1093/bioinformatics/btp324 10.1093/bioinformatics/btp324 CASPubMedWeb of Science®Google Scholar 28Li H, Handsaker B, Wysoker A, et al. The sequence alignment/map format and SAMtools. Bioinformatics. 2009; 25(16): 2078-2079. https://doi.org/10.1093/bioinformatics/btp352 10.1093/bioinformatics/btp352 CASPubMedWeb of Science®Google Scholar 29Chiu RWK, Akolekar R, Zheng YWL, et al. Non-invasive prenatal assessment of trisomy 21 by multiplexed maternal plasma DNA sequencing: large scale validity study. BMJ. 2011; 342(jan11 1):c7401. https://doi.org/10.1136/bmj.c7401 10.1136/bmj.c7401 PubMedWeb of Science®Google Scholar 30Kim SK, Hannum G, Geis J, et al. Determination of fetal DNA fraction from the plasma of pregnant women using sequence read counts. Prenat Diagn. 2015; 35(8): 810-815. https://doi.org/10.1002/pd.4615 10.1002/pd.4615 CASPubMedWeb of Science®Google Scholar 31Kwon HJ, Goyal A, Im HS, et al. Multiple z-score based method for noninvasive prenatal test using cell-free DNA in maternal plasma. Open J Genet. 2017; 7(01): 1-8. https://doi.org/10.4236/ojgen.2017.71001 10.4236/ojgen.2017.71001 Google Scholar 32Van Opstal D, Srebniak MI, Polak J, et al. False negative NIPT results: risk figures for chromosomes 13, 18 and 21 based on chorionic villi results in 5967 cases and literature review. PLos One. 2016; 11(1):e0146794. https://doi.org/10.1371/journal.pone.0146794 10.1371/journal.pone.0146794 PubMedWeb of Science®Google Scholar 33Wang L, Meng Q, Tang X, et al. Maternal mosaicism of sex chromosome causes discordant sex chromosomal aneuploidies associated with noninvasive prenatal testing. Taiwan J Obstet Gynecol. 2015; 54(5): 527-531. https://doi.org/10.1016/j.tjog.2014.10.009 10.1016/j.tjog.2014.10.009 PubMedWeb of Science®Google Scholar 34Ying X, Guodong Z, Longwei Q, Lu J, Yu B, Wang T. Sequencing shorter cfDNA fragments decreases the false negative rate of non-invasive prenatal testing. Front Genet. 2020; 11: 1-7. https://doi.org/10.3389/fgene.2020.00280 10.3389/fgene.2020.00280 PubMedWeb of Science®Google Scholar 35Yu SCY, Chan KC, Zheng YW, et al. Size-based molecular diagnostics using plasma DNA for noninvasiveprenatal testing. Proc Natl Acad Sci U S A. 2014; 111(23): 8583-8588. https://doi.org/10.1073/pnas.1406103111 10.1073/pnas.1406103111 CASPubMedWeb of Science®Google Scholar 36Ping H, Dong L, Yangyi C, et al. An enrichment method to increase cell-free fetal DNA fraction and significantly reduce false negatives and test failures for non-invasive prenatal screening: a feasibility study. J Transl Med. 2019; 17(1):124. https://doi.org/10.1186/s12967-019-1871-x 10.1186/s12967-019-1871-x PubMedGoogle Scholar 37Morten R, Mitsu R, Nolan R, et al. RNA profiles reveal signatures of future health and disease in pregnancy. Nature. 2022; 601(7893): 422-427. https://doi.org/10.1038/s41586-021-04249-w 10.1038/s41586-021-04249-w PubMedWeb of Science®Google Scholar Volume43, Issue13December 2023Pages 1581-1592 ReferencesRelatedInformation
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
符小俊完成签到,获得积分10
3秒前
典雅储发布了新的文献求助30
4秒前
打打应助小小怪采纳,获得10
4秒前
7秒前
8秒前
8秒前
maomao完成签到,获得积分10
11秒前
搜集达人应助合适背包采纳,获得10
11秒前
blue发布了新的文献求助10
12秒前
13秒前
GibsonYu发布了新的文献求助10
13秒前
14秒前
华仔应助taoatao采纳,获得10
16秒前
maomao发布了新的文献求助10
16秒前
17秒前
wch666发布了新的文献求助10
19秒前
23秒前
一个快乐的吃货完成签到,获得积分10
24秒前
hhhblabla应助细腻的依萱采纳,获得20
24秒前
28秒前
Jgogo发布了新的文献求助10
28秒前
taoatao发布了新的文献求助10
28秒前
阿蒙完成签到,获得积分10
29秒前
赘婿应助爱学习的曼卉采纳,获得10
31秒前
orixero应助典雅储采纳,获得10
33秒前
Bethune发布了新的文献求助10
34秒前
打打应助Chillym采纳,获得10
35秒前
真实的语堂完成签到,获得积分10
37秒前
38秒前
明年今日完成签到,获得积分10
41秒前
隐形曼青应助酷炫元风采纳,获得10
41秒前
42秒前
泽爷发布了新的文献求助10
43秒前
闹心发布了新的文献求助10
43秒前
45秒前
打打应助blue采纳,获得10
47秒前
hamburger完成签到 ,获得积分10
48秒前
czj发布了新的文献求助10
50秒前
54秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 1030
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3994080
求助须知:如何正确求助?哪些是违规求助? 3534628
关于积分的说明 11266093
捐赠科研通 3274554
什么是DOI,文献DOI怎么找? 1806388
邀请新用户注册赠送积分活动 883254
科研通“疑难数据库(出版商)”最低求助积分说明 809724