亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Utilizing machine learning algorithm for finely three-dimensional delineation of soil-groundwater contamination in a typical industrial park, North China: Importance of multisource auxiliary data

环境科学 污染 底土 地下水 土壤科学 水文地质学 地质统计学 含水层 水文学(农业) 环境工程 土壤水分 空间变异性 岩土工程 地质学 数学 生态学 统计 生物
作者
Siyan Liu,Xiao Yang,Biling Shi,Zhaoshu Liu,Xiulan Yan,Yaoyu Zhou,Tao Liang
出处
期刊:Science of The Total Environment [Elsevier]
卷期号:911: 168598-168598 被引量:5
标识
DOI:10.1016/j.scitotenv.2023.168598
摘要

Intensive industrial activities cause soil contamination with wide variations and even perturb groundwater safety. Precision delineation of soil contamination is the foundation and precondition for soil quality assurance in the practical environmental management process. However, spatial non-stationarity phenomenon of soil contamination and heterogeneous sampling are two key issues that affect the accuracy of contamination delineation model. Taking a typical industrial park in North China as the research object, we constructed a random forest (RF) model for finely characterizing the distribution of soil contaminants using sparse-biased drilling data. Results showed that the R2 values of arsenic and 1,2-dichloroethane predicted by RF (0.8896 and 0.8973) were greatly higher than those of inverse distance weighted model (0.2848 and 0.2908), indicating that RF was more adaptable to actual non-stationarity sites. The back propagation neural network algorithm was utilized to establish a three-dimensional visualization of the contamination parcel of subsoil-groundwater system. Multiple sources of environmental data, including hydrogeological conditions, geochemical characteristics and anthropogenic industrial activities were integrated into the model to optimize the prediction accuracy. The feature importance analysis revealed that soil particle size was dominant for the migration of arsenic, while the migration of 1,2-dichloroethane highly depended on vertical permeability coefficients of the soil. Contaminants migrated downwards with soil water under gravity-driven conditions and penetrated through the subsoil to reach the saturated aquifer, forming a contamination plume with groundwater flow. Our findings afford a new idea for spatial analysis of soil-groundwater contamination at industrial sites, which will provide valuable technical support for maintaining sustainable industry.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zzz完成签到,获得积分10
19秒前
LYegoist完成签到,获得积分10
30秒前
31秒前
和谐的夏岚完成签到 ,获得积分10
31秒前
36秒前
cc完成签到,获得积分10
52秒前
57秒前
共享精神应助世隐采纳,获得10
1分钟前
Tia0727完成签到 ,获得积分10
1分钟前
1分钟前
Alan完成签到 ,获得积分10
1分钟前
1分钟前
Lucas应助科研通管家采纳,获得10
1分钟前
马62发布了新的文献求助10
2分钟前
2分钟前
2分钟前
Owen应助南寻采纳,获得10
2分钟前
JamesPei应助小周采纳,获得10
3分钟前
3分钟前
马62完成签到,获得积分10
3分钟前
3分钟前
3分钟前
3分钟前
李健的小迷弟应助CHINA_C13采纳,获得10
3分钟前
imkhun1021发布了新的文献求助10
3分钟前
Tia0727发布了新的文献求助200
3分钟前
善学以致用应助赵明君采纳,获得10
3分钟前
3分钟前
3分钟前
赵明君完成签到,获得积分10
3分钟前
3分钟前
赵明君发布了新的文献求助10
3分钟前
所所应助科研通管家采纳,获得10
3分钟前
Aurora完成签到 ,获得积分10
4分钟前
4分钟前
4分钟前
qql完成签到,获得积分10
4分钟前
4分钟前
4分钟前
lm番茄发布了新的文献求助10
4分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3455664
求助须知:如何正确求助?哪些是违规求助? 3050901
关于积分的说明 9022990
捐赠科研通 2739435
什么是DOI,文献DOI怎么找? 1502817
科研通“疑难数据库(出版商)”最低求助积分说明 694628
邀请新用户注册赠送积分活动 693400