已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Utilizing machine learning algorithm for finely three-dimensional delineation of soil-groundwater contamination in a typical industrial park, North China: Importance of multisource auxiliary data

环境科学 污染 底土 地下水 土壤科学 水文地质学 地质统计学 含水层 水文学(农业) 环境工程 土壤水分 空间变异性 岩土工程 地质学 数学 统计 生态学 生物
作者
Siyan Liu,Xiao Yang,Biling Shi,Zhaoshu Liu,Xiulan Yan,Yaoyu Zhou,Tao Liang
出处
期刊:Science of The Total Environment [Elsevier BV]
卷期号:911: 168598-168598 被引量:8
标识
DOI:10.1016/j.scitotenv.2023.168598
摘要

Intensive industrial activities cause soil contamination with wide variations and even perturb groundwater safety. Precision delineation of soil contamination is the foundation and precondition for soil quality assurance in the practical environmental management process. However, spatial non-stationarity phenomenon of soil contamination and heterogeneous sampling are two key issues that affect the accuracy of contamination delineation model. Taking a typical industrial park in North China as the research object, we constructed a random forest (RF) model for finely characterizing the distribution of soil contaminants using sparse-biased drilling data. Results showed that the R2 values of arsenic and 1,2-dichloroethane predicted by RF (0.8896 and 0.8973) were greatly higher than those of inverse distance weighted model (0.2848 and 0.2908), indicating that RF was more adaptable to actual non-stationarity sites. The back propagation neural network algorithm was utilized to establish a three-dimensional visualization of the contamination parcel of subsoil-groundwater system. Multiple sources of environmental data, including hydrogeological conditions, geochemical characteristics and anthropogenic industrial activities were integrated into the model to optimize the prediction accuracy. The feature importance analysis revealed that soil particle size was dominant for the migration of arsenic, while the migration of 1,2-dichloroethane highly depended on vertical permeability coefficients of the soil. Contaminants migrated downwards with soil water under gravity-driven conditions and penetrated through the subsoil to reach the saturated aquifer, forming a contamination plume with groundwater flow. Our findings afford a new idea for spatial analysis of soil-groundwater contamination at industrial sites, which will provide valuable technical support for maintaining sustainable industry.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
ff完成签到,获得积分10
1秒前
科研通AI5应助眉洛采纳,获得10
3秒前
freezing发布了新的文献求助10
4秒前
淡淡完成签到,获得积分20
5秒前
默默小鸽子完成签到,获得积分10
6秒前
7秒前
曲奇发布了新的文献求助20
7秒前
hh完成签到 ,获得积分10
8秒前
共享精神应助lanyatian采纳,获得10
9秒前
9秒前
张emo发布了新的文献求助10
10秒前
11秒前
12秒前
袁翰将军完成签到 ,获得积分10
13秒前
15秒前
Yii发布了新的文献求助30
16秒前
烟花应助MeetAgainLZH采纳,获得10
18秒前
CodeCraft应助含蓄的小鸽子采纳,获得10
19秒前
轻松山柏完成签到,获得积分10
20秒前
张涛完成签到,获得积分10
21秒前
22秒前
xzy998应助科研通管家采纳,获得10
22秒前
xzy998应助科研通管家采纳,获得10
22秒前
正摩六堂完成签到,获得积分10
22秒前
CipherSage应助科研通管家采纳,获得10
22秒前
天天快乐应助科研通管家采纳,获得10
22秒前
科研通AI2S应助科研通管家采纳,获得10
22秒前
研友_VZG7GZ应助科研通管家采纳,获得10
22秒前
xzy998应助科研通管家采纳,获得10
22秒前
xzy998应助科研通管家采纳,获得10
22秒前
酷波er应助科研通管家采纳,获得10
22秒前
Lucas应助科研通管家采纳,获得10
22秒前
xzy998应助科研通管家采纳,获得10
22秒前
传奇3应助科研通管家采纳,获得10
22秒前
科研通AI6应助科研通管家采纳,获得10
22秒前
香蕉觅云应助科研通管家采纳,获得10
22秒前
23秒前
Yii完成签到,获得积分10
23秒前
高兴的彩虹完成签到,获得积分10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Zur lokalen Geoidbestimmung aus terrestrischen Messungen vertikaler Schweregradienten 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 500
translating meaning 500
Storie e culture della televisione 500
Selected research on camelid physiology and nutrition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4899245
求助须知:如何正确求助?哪些是违规求助? 4179637
关于积分的说明 12975373
捐赠科研通 3943651
什么是DOI,文献DOI怎么找? 2163478
邀请新用户注册赠送积分活动 1181737
关于科研通互助平台的介绍 1087447