已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Utilizing machine learning algorithm for finely three-dimensional delineation of soil-groundwater contamination in a typical industrial park, North China: Importance of multisource auxiliary data

环境科学 污染 底土 地下水 土壤科学 水文地质学 地质统计学 含水层 水文学(农业) 环境工程 土壤水分 空间变异性 岩土工程 地质学 数学 生态学 统计 生物
作者
Siyan Liu,Xiao Yang,Biling Shi,Zhaoshu Liu,Xiulan Yan,Yaoyu Zhou,Tao Liang
出处
期刊:Science of The Total Environment [Elsevier BV]
卷期号:911: 168598-168598 被引量:8
标识
DOI:10.1016/j.scitotenv.2023.168598
摘要

Intensive industrial activities cause soil contamination with wide variations and even perturb groundwater safety. Precision delineation of soil contamination is the foundation and precondition for soil quality assurance in the practical environmental management process. However, spatial non-stationarity phenomenon of soil contamination and heterogeneous sampling are two key issues that affect the accuracy of contamination delineation model. Taking a typical industrial park in North China as the research object, we constructed a random forest (RF) model for finely characterizing the distribution of soil contaminants using sparse-biased drilling data. Results showed that the R2 values of arsenic and 1,2-dichloroethane predicted by RF (0.8896 and 0.8973) were greatly higher than those of inverse distance weighted model (0.2848 and 0.2908), indicating that RF was more adaptable to actual non-stationarity sites. The back propagation neural network algorithm was utilized to establish a three-dimensional visualization of the contamination parcel of subsoil-groundwater system. Multiple sources of environmental data, including hydrogeological conditions, geochemical characteristics and anthropogenic industrial activities were integrated into the model to optimize the prediction accuracy. The feature importance analysis revealed that soil particle size was dominant for the migration of arsenic, while the migration of 1,2-dichloroethane highly depended on vertical permeability coefficients of the soil. Contaminants migrated downwards with soil water under gravity-driven conditions and penetrated through the subsoil to reach the saturated aquifer, forming a contamination plume with groundwater flow. Our findings afford a new idea for spatial analysis of soil-groundwater contamination at industrial sites, which will provide valuable technical support for maintaining sustainable industry.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
13508104971发布了新的文献求助10
3秒前
0000完成签到 ,获得积分10
5秒前
博修发布了新的文献求助100
6秒前
wzytu3完成签到,获得积分10
9秒前
在水一方应助科研通管家采纳,获得10
11秒前
科研通AI2S应助科研通管家采纳,获得10
11秒前
爆米花应助科研通管家采纳,获得10
11秒前
bkagyin应助科研通管家采纳,获得10
11秒前
柯一一应助科研通管家采纳,获得10
11秒前
小稻草人应助科研通管家采纳,获得10
11秒前
11秒前
11秒前
11秒前
w5566完成签到 ,获得积分10
12秒前
斯文招牌完成签到,获得积分10
13秒前
林攸之完成签到,获得积分10
14秒前
orixero应助wzytu3采纳,获得10
15秒前
a553355发布了新的文献求助10
16秒前
坐宝马吃地瓜完成签到 ,获得积分10
20秒前
量子星尘发布了新的文献求助10
24秒前
善学以致用应助博修采纳,获得10
27秒前
桐桐应助LNN采纳,获得10
29秒前
30秒前
公西傲蕾发布了新的文献求助20
30秒前
677发布了新的文献求助10
34秒前
34秒前
34秒前
36秒前
陈住气发布了新的文献求助10
37秒前
39秒前
LNN发布了新的文献求助10
40秒前
泥嚎关注了科研通微信公众号
41秒前
可靠草丛发布了新的文献求助10
41秒前
JJ发布了新的文献求助10
41秒前
42秒前
阿亞完成签到,获得积分10
42秒前
没有伞的青春完成签到 ,获得积分10
46秒前
陈住气完成签到,获得积分10
47秒前
博修发布了新的文献求助10
47秒前
48秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959928
求助须知:如何正确求助?哪些是违规求助? 3506172
关于积分的说明 11128138
捐赠科研通 3238123
什么是DOI,文献DOI怎么找? 1789535
邀请新用户注册赠送积分活动 871803
科研通“疑难数据库(出版商)”最低求助积分说明 803024