亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Multiple intersections traffic signal control based on cooperative multi-agent reinforcement learning

强化学习 交叉口(航空) 计算机科学 信号(编程语言) 功能(生物学) 分歧(语言学) 多智能体系统 数学优化 人工智能 数学 工程类 语言学 进化生物学 生物 哲学 航空航天工程 程序设计语言
作者
Junxiu Liu,Sheng Qin,Min Su,Yuling Luo,Yanhu Wang,Su Yang
出处
期刊:Information Sciences [Elsevier]
卷期号:647: 119484-119484 被引量:7
标识
DOI:10.1016/j.ins.2023.119484
摘要

For the multi-agent traffic signal controls, the traffic signal at each intersection is controlled by an independent agent. Since the control policy for each agent is dynamic, when the traffic scale is large, the adjustment of the agent's policy brings non-stationary effects over surrounding intersections, leading to the instability of the overall system. Therefore, there is the necessity to eliminate this non-stationarity effect to stabilize the multi-agent system. A collaborative multi-agent reinforcement learning method is proposed in this work to enable the system to overcome the instability problem through a collaborative mechanism. Decentralized learning with limited communication is used to reduce the communication latency between agents. The Shapley value reward function is applied to comprehensively calculate the contribution of each agent to avoid the influence of reward function coefficient variation, thereby reducing unstable factors. The Kullback-Leibler divergence is then used to distinguish the current and historical policies, and the loss function is optimized to eliminate the environmental non-stationarity. Experimental results demonstrate that the average travel time and its standard deviation are reduced by using the Shapley value reward function and optimized loss function, respectively, and this work provides an alternative for traffic signal controls on multiple intersections.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
z_rainbow发布了新的文献求助10
2秒前
寻舟者完成签到,获得积分10
5秒前
dawnfrf完成签到,获得积分10
15秒前
ciallo发布了新的文献求助10
16秒前
传统的怀薇完成签到 ,获得积分10
23秒前
35秒前
科研通AI2S应助科研通管家采纳,获得10
35秒前
今后应助科研通管家采纳,获得10
35秒前
nini完成签到,获得积分10
46秒前
皮皮完成签到 ,获得积分10
49秒前
情怀应助光轮2000采纳,获得10
1分钟前
ljx完成签到 ,获得积分10
1分钟前
weihua完成签到 ,获得积分10
1分钟前
1分钟前
大个应助ciallo采纳,获得10
1分钟前
1分钟前
xtt发布了新的文献求助10
1分钟前
光轮2000发布了新的文献求助10
1分钟前
Lucas应助橘子有点酸采纳,获得10
1分钟前
1分钟前
MR_芝欧发布了新的文献求助10
1分钟前
1分钟前
2分钟前
2分钟前
科研通AI2S应助光轮2000采纳,获得10
2分钟前
2分钟前
2分钟前
光轮2000发布了新的文献求助10
2分钟前
小二郎应助科研通管家采纳,获得10
2分钟前
wangfaqing942完成签到 ,获得积分10
2分钟前
xixiazhiwang完成签到 ,获得积分10
2分钟前
xaopng完成签到,获得积分10
3分钟前
3分钟前
Lucas应助lzy采纳,获得10
3分钟前
ceeray23发布了新的文献求助20
3分钟前
追寻的月光完成签到,获得积分10
3分钟前
光轮2000发布了新的文献求助10
3分钟前
4分钟前
jiao完成签到,获得积分20
4分钟前
小正完成签到,获得积分10
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
El poder y la palabra: prensa y poder político en las dictaduras : el régimen de Franco ante la prensa y el periodismo 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5603285
求助须知:如何正确求助?哪些是违规求助? 4688360
关于积分的说明 14853336
捐赠科研通 4688979
什么是DOI,文献DOI怎么找? 2540586
邀请新用户注册赠送积分活动 1506982
关于科研通互助平台的介绍 1471594