Unsupervised Salient Object Detection Based on Depth-Induced Pseudo-Labels Updating

突出 计算机科学 人工智能 目标检测 计算机视觉 对象(语法) 模式识别(心理学)
作者
Kun Xu,Jichang Guo
标识
DOI:10.2139/ssrn.4600330
摘要

The performance of RGB-D salient object detection have improved prominently in recent years, owing to the rapid development of deep learning algorithms. However, recent state-of-the-art RGB-D salient object detection are mainly based on the supervised learning which demand large quantity of ground truth being thoroughly annotated at pixel-level. They are really laborious and time-consuming. Furthermore, the RGB-D salient object detection training with supervised learning are not suitable for various practical scenarios. In this paper, we tackle the challenging task of unsupervised salient object detection by leveraging the pseudo-labels automatic updating and the depth-induced uncertainty module, named RGB-D USOD Based on Depth-induced Pseudo-labels Updating (DPU). There are three main steps for our proposed methods. The first and second steps are used to generate and optimize the pseudo-labels based on center-dark channel prior and VGG backbone. The first step relies on handcrafted feature representations while the second one depends on semantic representations. Last but not the least, the DPU is proposed to update the pseudo ground truth during the training process and predict the final salient object. Extensive experiments demonstrate the superior efficiency and effectiveness of our approach in tackling the challenging unsupervised RGB-D salient object detection, compared with 16 unsupervised salient object detectors.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
duoduo完成签到,获得积分10
刚刚
1秒前
蒋小亮发布了新的文献求助10
1秒前
2秒前
ping发布了新的文献求助10
2秒前
2秒前
俏皮从雪完成签到,获得积分20
2秒前
2秒前
yingying完成签到,获得积分10
3秒前
3秒前
4秒前
4秒前
duoduo发布了新的文献求助10
5秒前
yatou5651发布了新的文献求助10
5秒前
WANG240Z完成签到,获得积分10
5秒前
阔落发布了新的文献求助10
6秒前
7秒前
S77发布了新的文献求助10
7秒前
丘比特应助yingying采纳,获得10
7秒前
8秒前
追求科研的小白完成签到,获得积分10
8秒前
罗微关注了科研通微信公众号
8秒前
8秒前
9秒前
夏爽2023完成签到,获得积分10
9秒前
动听的储发布了新的文献求助10
9秒前
莫闹完成签到 ,获得积分10
9秒前
9秒前
10秒前
12秒前
12秒前
13秒前
davinqi完成签到,获得积分10
14秒前
等成完成签到 ,获得积分10
14秒前
14秒前
傅傅完成签到,获得积分10
15秒前
15秒前
桐桐应助6789采纳,获得10
16秒前
JamesPei应助沉默的稀采纳,获得10
16秒前
16秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Musculoskeletal Pain - Market Insight, Epidemiology And Market Forecast - 2034 2000
Animal Physiology 2000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3744718
求助须知:如何正确求助?哪些是违规求助? 3287712
关于积分的说明 10054740
捐赠科研通 3003914
什么是DOI,文献DOI怎么找? 1649258
邀请新用户注册赠送积分活动 785217
科研通“疑难数据库(出版商)”最低求助积分说明 750960