Constructing an Ultra-Rapid Nanoconfinement-Enhanced Fluorescence Clinical Detection Platform by Using Machine Learning and Tunable DNA Xerogel “Probe”

化学 荧光 DNA 纳米技术 光学 生物化学 物理 材料科学
作者
Meng Yu,Rongkai Ye,Tao Zeng,Li Tan,Ziyu Zhao,Wenjing Gao,Xin Chen,Ziqi Lian,Ying Ma,Aiqing Li,Jianqiang Hu
出处
期刊:Analytical Chemistry [American Chemical Society]
卷期号:95 (42): 15690-15699 被引量:11
标识
DOI:10.1021/acs.analchem.3c02955
摘要

Low mass transfer efficiency and unavoidable matrix effects seriously limit the development of rapid and accurate determination of biosensing systems. Herein, we have successfully constructed an ultra-rapid nanoconfinement-enhanced fluorescence clinical detection platform based on machine learning (ML) and DNA xerogel "probe", which was performed by detecting neutrophil gelatinase-associated lipocalin (NGAL, protein biomarker of acute kidney injury). By regulating pore sizes of the xerogels, the transfer of NGAL in xerogels can approximate that in homogeneous solution. Due to electrostatic attraction of the pore entrances, NGAL rapidly enriches on the surface and inside the xerogels. The reaction rate of NGAL and aptamer cross-linked in xerogels is also accelerated because of the nanoconfinement effect-induced increasing reactant concentration and the enhanced affinity constant KD between reactants, which can be promoted by ∼667-fold than that in bulk solution, thus achieving ultra-rapid detection (ca. 5 min) of human urine. The platform could realize one-step detection without sample pretreatments due to the antiligand exchange effect on the surface of N-doped carbon quantum dots (N-CQDs) in xerogels, in which ligand exchange between −COOH and underlying interfering ions in urine will be inhibited due to higher adsorption energy of −COOH on the N-CQD surface relative to the interfering ions. Based on the ML-extended program, the real-time analysis of the urine fluorescence spectra can be completed within 2 s. Interestingly, by changing DNA, aptamer sequences, or xerogel fluorescence intensities, the detection platform can be customized for targeted diseases.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
青青子衿发布了新的文献求助10
1秒前
爆米花应助绍成采纳,获得10
2秒前
充电宝应助萤火虫采纳,获得10
4秒前
面包完成签到 ,获得积分10
6秒前
科研通AI2S应助sny采纳,获得10
6秒前
pets000发布了新的文献求助10
11秒前
领导范儿应助嘎嘎咻采纳,获得10
12秒前
12秒前
13秒前
Hello应助11266采纳,获得10
14秒前
14秒前
葡萄夹子给葡萄夹子的求助进行了留言
14秒前
hahaha123完成签到 ,获得积分10
15秒前
杜小杜发布了新的文献求助10
17秒前
绍成发布了新的文献求助10
18秒前
桐桐应助sponge采纳,获得10
20秒前
薯片完成签到,获得积分20
22秒前
ding应助何必采纳,获得10
22秒前
22秒前
w。发布了新的文献求助10
22秒前
Akim应助HK采纳,获得10
24秒前
九香虫发布了新的文献求助10
24秒前
嘀嘀嘀发布了新的文献求助10
25秒前
26秒前
11266完成签到,获得积分10
26秒前
CipherSage应助AQI采纳,获得10
26秒前
Gen_cexon发布了新的文献求助10
27秒前
小白发布了新的文献求助100
29秒前
李健应助lianglimay采纳,获得10
29秒前
29秒前
深情安青应助w。采纳,获得10
31秒前
11266发布了新的文献求助10
31秒前
白雪皑皑完成签到 ,获得积分10
32秒前
萧水白应助qq采纳,获得10
33秒前
33秒前
34秒前
赘婿应助简单茗采纳,获得10
35秒前
36秒前
36秒前
赘婿应助zhouyi采纳,获得10
38秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Saponins and sapogenins. IX. Saponins and sapogenins of Luffa aegyptica mill seeds (black variety) 500
Fundamentals of Dispersed Multiphase Flows 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3261135
求助须知:如何正确求助?哪些是违规求助? 2901993
关于积分的说明 8318609
捐赠科研通 2571798
什么是DOI,文献DOI怎么找? 1397250
科研通“疑难数据库(出版商)”最低求助积分说明 653684
邀请新用户注册赠送积分活动 632216