代谢组学
珊瑚
全生物
生物
代谢物
共生
共生藻
细菌
计算生物学
生态学
生物化学
生物信息学
遗传学
作者
J. L. Matthews,Natasha Bartels,Sheik Nadeem Elahee Doomun,Simon K. Davy,David P. De Souza
摘要
Gas chromatography-mass spectrometry (GC-MS)-based approaches have proven to be powerful for elucidating the metabolic basis of the cnidarian-dinoflagellate symbiosis and how coral responds to stress (i.e., during temperature-induced bleaching). Steady-state metabolite profiling of the coral holobiont, which comprises the cnidarian host and its associated microbes (Symbiodiniaceae and other protists, bacteria, archaea, fungi, and viruses), has been successfully applied under ambient and stress conditions to characterize the holistic metabolic status of the coral. However, to answer questions surrounding the symbiotic interactions, it is necessary to analyze the metabolite profiles of the coral host and its algal symbionts independently, which can only be achieved by physical separation and isolation of the tissues, followed by independent extraction and analysis. While the application of metabolomics is relatively new to the coral field, the sustained efforts of research groups have resulted in the development of robust methods for analyzing metabolites in corals, including the separation of the coral host tissue and algal symbionts. This paper presents a step-by-step guide for holobiont separation and the extraction of metabolites for GC-MS analysis, including key optimization steps for consideration. We demonstrate how, once analyzed independently, the combined metabolite profile of the two fractions (coral and Symbiodiniaceae) is similar to the profile of the whole (holobiont), but by separating the tissues, we can also obtain key information about the metabolism of and interactions between the two partners that cannot be obtained from the whole alone.
科研通智能强力驱动
Strongly Powered by AbleSci AI