Predictive Biomarkers for Immunotherapy in Gastric Cancer: Current Status and Emerging Prospects

免疫疗法 癌症 医学 癌症免疫疗法 生物标志物 背景(考古学) 精密医学 组学 肿瘤科 生物信息学 免疫学 内科学 生物 病理 生物化学 古生物学
作者
Wanting Hou,Yaqin Zhao,Hong Zhu
出处
期刊:International Journal of Molecular Sciences [Multidisciplinary Digital Publishing Institute]
卷期号:24 (20): 15321-15321 被引量:15
标识
DOI:10.3390/ijms242015321
摘要

Gastric cancer presents substantial management challenges, and the advent of immunotherapy has ignited renewed hope among patients. Nevertheless, a significant proportion of patients do not respond to immunotherapy, and adverse events associated with immunotherapy also occur on occasion, underscoring the imperative to identify suitable candidates for treatment. Several biomarkers, including programmed death ligand-1 expression, tumor mutation burden, mismatch repair status, Epstein–Barr Virus infection, circulating tumor DNA, and tumor-infiltrating lymphocytes, have demonstrated potential in predicting the effectiveness of immunotherapy in gastric cancer. However, the quest for the optimal predictive biomarker for gastric cancer immunotherapy remains challenging, as each biomarker carries its own limitations. Recently, multi-omics technologies have emerged as promising platforms for discovering novel biomarkers that may help in selecting gastric cancer patients likely to respond to immunotherapy. The identification of reliable predictive biomarkers for immunotherapy in gastric cancer holds the promise of enhancing patient selection and improving treatment outcomes. In this review, we aim to provide an overview of clinically established biomarkers of immunotherapy in gastric cancer. Additionally, we introduce newly reported biomarkers based on multi-omics studies in the context of gastric cancer immunotherapy, thereby contributing to the ongoing efforts to refine patient stratification and treatment strategies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
苗芸发布了新的文献求助10
1秒前
踏实无敌应助buno采纳,获得30
2秒前
2秒前
自信鑫鹏完成签到,获得积分10
2秒前
kyra完成签到,获得积分10
3秒前
popo完成签到,获得积分10
3秒前
JamesPei应助wantong采纳,获得10
3秒前
Imin完成签到,获得积分10
4秒前
zxh完成签到,获得积分10
4秒前
都是发布了新的文献求助10
4秒前
zz完成签到 ,获得积分10
4秒前
英姑应助科研通管家采纳,获得10
4秒前
斯文败类应助科研通管家采纳,获得10
4秒前
Grayball应助科研通管家采纳,获得10
4秒前
Hello应助科研通管家采纳,获得10
4秒前
111111111完成签到,获得积分10
4秒前
Cat应助科研通管家采纳,获得10
4秒前
烟花应助科研通管家采纳,获得10
4秒前
CGBIO发布了新的文献求助10
4秒前
科研通AI5应助科研通管家采纳,获得10
5秒前
科研通AI5应助科研通管家采纳,获得10
5秒前
大个应助科研通管家采纳,获得10
5秒前
传奇3应助科研通管家采纳,获得10
5秒前
田様应助科研通管家采纳,获得10
5秒前
丘比特应助科研通管家采纳,获得10
5秒前
SYLH应助科研通管家采纳,获得10
5秒前
华仔应助科研通管家采纳,获得10
5秒前
隐形曼青应助科研通管家采纳,获得10
5秒前
寻梦完成签到,获得积分10
5秒前
5秒前
NexusExplorer应助科研通管家采纳,获得10
5秒前
FashionBoy应助科研通管家采纳,获得10
6秒前
香蕉觅云应助科研通管家采纳,获得10
6秒前
SYLH应助科研通管家采纳,获得10
6秒前
赘婿应助科研通管家采纳,获得10
6秒前
ding应助科研通管家采纳,获得10
6秒前
科研通AI5应助科研通管家采纳,获得10
6秒前
NIne7发布了新的文献求助10
6秒前
科研通AI5应助科研通管家采纳,获得10
6秒前
好困应助科研通管家采纳,获得10
6秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Production Logging: Theoretical and Interpretive Elements 3000
CRC Handbook of Chemistry and Physics 104th edition 1000
Density Functional Theory: A Practical Introduction, 2nd Edition 840
J'AI COMBATTU POUR MAO // ANNA WANG 660
Izeltabart tapatansine - AdisInsight 600
Gay and Lesbian Asia 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3754546
求助须知:如何正确求助?哪些是违规求助? 3298093
关于积分的说明 10102689
捐赠科研通 3012698
什么是DOI,文献DOI怎么找? 1654686
邀请新用户注册赠送积分活动 789131
科研通“疑难数据库(出版商)”最低求助积分说明 753159