Improved potato AGB estimates based on UAV RGB and hyperspectral images

高光谱成像 小波 精准农业 数学 小波变换 RGB颜色模型 离散小波变换 天蓬 遥感 人工智能 计算机科学 地理 农业 考古
作者
Yang Liu,Haikuan Feng,Jibo Yue,Xiuliang Jin,Yiguang Fan,Riqiang Chen,Mingming Bian,Yanpeng Ma,Xiaoyu Song,Guijun Yang
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:214: 108260-108260 被引量:22
标识
DOI:10.1016/j.compag.2023.108260
摘要

Crops' above-ground biomass (AGB) is a crucial indicator that reflects crop health and predicts crop yield. However, using only optical vegetation indices (VIs) can produce inaccurate AGB estimates due to differences in crop varieties, growth stages, and measurement environments. Given the advantages of unmanned aerial vehicle (UAV) RGB and hyperspectral image fusion, this study evaluated the performance of multi-source remote sensing data for estimating potato AGB at multiple growth stages. In 2019, this study conducted potato trials with different varieties, fertilization levels, and planting densities at the Xiaotangshan Experiment Base (Beijing). UAV image and AGB data of potato three main stages were obtained from ground survey work. High-frequency information of the potato canopy was extracted from RGB images using discrete wavelet transform (DWT). VIs and wavelet energy coefficients were extracted from hyperspectral images using continuous wavelet transform (CWT). The linear relationships between potato AGB with VIs, high-frequency information, and wavelet coefficients were analyzed. Potato AGB estimation models were constructed based on single and multiple types of variables using multiple stepwise regression (MSR) and random forest (RF) models, respectively. This work showed the following results: (i) High-frequency information and wavelet coefficients were more sensitive to potato multi-growth stage AGB than VIs, and the latter were the most sensitive. (ii) Using VIs, high-frequency information, or wavelet coefficients separately to estimate the potato multi-growth stage AGB resulted in higher error and lower model accuracy. (iii) Combining VIs with either high-frequency information or wavelet coefficients improved the accuracy of AGB estimation, which was further improved by combining high-frequency information with wavelet coefficients. (iv) Combining VIs with both high-frequency information and wavelet coefficients provided the highest estimation accuracy using the MSR method. This combined AGB estimation model reduced the RMSE by 27%, 21%, and 16%, respectively, relative to VIs, high-frequency information, or wavelet coefficients alone. This result shows that the complementary advantages of multi-source UAV data can solve the challenge of insufficient AGB estimation by optical remote sensing. The work in this study provides remote sensing technology support to achieve potato crop growth monitoring and improve yield predictions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
传奇3应助迅速孤容采纳,获得10
1秒前
wanghuan发布了新的文献求助10
1秒前
阿林琳琳发布了新的文献求助10
1秒前
2秒前
TE完成签到,获得积分20
2秒前
蜗牛的世界完成签到,获得积分10
4秒前
4秒前
松亚完成签到 ,获得积分10
4秒前
5秒前
科目三应助shen采纳,获得10
5秒前
ZZQ发布了新的文献求助10
5秒前
留胡子的晓灵完成签到,获得积分10
5秒前
复杂外套发布了新的文献求助10
7秒前
cgg发布了新的文献求助10
7秒前
7秒前
十八发布了新的文献求助20
8秒前
哈哈哈哈哈完成签到,获得积分10
9秒前
K. G.完成签到,获得积分0
10秒前
10秒前
shan完成签到,获得积分10
10秒前
没烦恼发布了新的文献求助30
10秒前
11秒前
机智秋烟完成签到,获得积分20
11秒前
l六分之一完成签到,获得积分10
11秒前
12秒前
June发布了新的文献求助10
12秒前
13秒前
一米阳光完成签到,获得积分10
15秒前
春鸟完成签到,获得积分10
15秒前
雪艇发布了新的文献求助10
16秒前
Jenny应助川木采纳,获得50
16秒前
趣多多发布了新的文献求助10
17秒前
17秒前
aaac发布了新的文献求助10
17秒前
薰硝壤应助背后的静白采纳,获得10
19秒前
巧克力大王完成签到 ,获得积分10
19秒前
科研通AI2S应助机智秋烟采纳,获得10
21秒前
康zai发布了新的文献求助10
21秒前
大有阳光应助友好醉波采纳,获得10
21秒前
nnnnnn完成签到,获得积分10
23秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3156078
求助须知:如何正确求助?哪些是违规求助? 2807458
关于积分的说明 7873196
捐赠科研通 2465782
什么是DOI,文献DOI怎么找? 1312412
科研通“疑难数据库(出版商)”最低求助积分说明 630102
版权声明 601905