Improved potato AGB estimates based on UAV RGB and hyperspectral images

高光谱成像 小波 精准农业 数学 小波变换 RGB颜色模型 离散小波变换 天蓬 遥感 人工智能 计算机科学 地理 考古 农业
作者
Yang Liu,Haikuan Feng,Jibo Yue,Xiuliang Jin,Yiguang Fan,Riqiang Chen,Mingbo Bian,Yanpeng Ma,Xiaoyu Song,Guijun Yang
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:214: 108260-108260 被引量:72
标识
DOI:10.1016/j.compag.2023.108260
摘要

Crops' above-ground biomass (AGB) is a crucial indicator that reflects crop health and predicts crop yield. However, using only optical vegetation indices (VIs) can produce inaccurate AGB estimates due to differences in crop varieties, growth stages, and measurement environments. Given the advantages of unmanned aerial vehicle (UAV) RGB and hyperspectral image fusion, this study evaluated the performance of multi-source remote sensing data for estimating potato AGB at multiple growth stages. In 2019, this study conducted potato trials with different varieties, fertilization levels, and planting densities at the Xiaotangshan Experiment Base (Beijing). UAV image and AGB data of potato three main stages were obtained from ground survey work. High-frequency information of the potato canopy was extracted from RGB images using discrete wavelet transform (DWT). VIs and wavelet energy coefficients were extracted from hyperspectral images using continuous wavelet transform (CWT). The linear relationships between potato AGB with VIs, high-frequency information, and wavelet coefficients were analyzed. Potato AGB estimation models were constructed based on single and multiple types of variables using multiple stepwise regression (MSR) and random forest (RF) models, respectively. This work showed the following results: (i) High-frequency information and wavelet coefficients were more sensitive to potato multi-growth stage AGB than VIs, and the latter were the most sensitive. (ii) Using VIs, high-frequency information, or wavelet coefficients separately to estimate the potato multi-growth stage AGB resulted in higher error and lower model accuracy. (iii) Combining VIs with either high-frequency information or wavelet coefficients improved the accuracy of AGB estimation, which was further improved by combining high-frequency information with wavelet coefficients. (iv) Combining VIs with both high-frequency information and wavelet coefficients provided the highest estimation accuracy using the MSR method. This combined AGB estimation model reduced the RMSE by 27%, 21%, and 16%, respectively, relative to VIs, high-frequency information, or wavelet coefficients alone. This result shows that the complementary advantages of multi-source UAV data can solve the challenge of insufficient AGB estimation by optical remote sensing. The work in this study provides remote sensing technology support to achieve potato crop growth monitoring and improve yield predictions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wxwang完成签到,获得积分10
1秒前
虚心雁菱完成签到,获得积分10
1秒前
1秒前
犹豫的铅笔完成签到,获得积分10
1秒前
cookingmouse完成签到,获得积分10
1秒前
无名应助lms采纳,获得10
2秒前
tingalan应助zy采纳,获得10
2秒前
pepeli完成签到,获得积分10
2秒前
FashionBoy应助chenhua5460采纳,获得10
2秒前
chemier027完成签到,获得积分10
2秒前
2秒前
火星上醉山完成签到 ,获得积分10
2秒前
夜阑卧听完成签到,获得积分0
3秒前
3秒前
3秒前
hbsand发布了新的文献求助10
3秒前
3秒前
3秒前
文艺的蜜蜂完成签到 ,获得积分10
4秒前
我爱科研完成签到,获得积分10
4秒前
科研通AI6应助沉静朋友采纳,获得10
4秒前
4秒前
George Will完成签到 ,获得积分10
4秒前
4秒前
温和的开水完成签到,获得积分10
4秒前
5秒前
元元堡堡完成签到 ,获得积分10
5秒前
迟迟完成签到 ,获得积分10
6秒前
柒月小鱼完成签到 ,获得积分10
6秒前
zhizhi发布了新的文献求助10
6秒前
杨华启完成签到,获得积分10
6秒前
炸茄盒的老头完成签到,获得积分10
6秒前
英俊的铭应助虚心雁菱采纳,获得30
6秒前
Owen应助小小鱼采纳,获得30
6秒前
CDX完成签到 ,获得积分10
7秒前
hyf完成签到,获得积分20
7秒前
You完成签到,获得积分10
7秒前
受伤听露完成签到,获得积分10
7秒前
7秒前
cheng完成签到,获得积分10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5665118
求助须知:如何正确求助?哪些是违规求助? 4875227
关于积分的说明 15112135
捐赠科研通 4824320
什么是DOI,文献DOI怎么找? 2582694
邀请新用户注册赠送积分活动 1536665
关于科研通互助平台的介绍 1495279