Improved potato AGB estimates based on UAV RGB and hyperspectral images

高光谱成像 小波 精准农业 数学 小波变换 RGB颜色模型 离散小波变换 天蓬 遥感 人工智能 计算机科学 地理 考古 农业
作者
Yang Liu,Haikuan Feng,Jibo Yue,Xiuliang Jin,Yiguang Fan,Riqiang Chen,Mingming Bian,Yanpeng Ma,Xiaoyu Song,Guijun Yang
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:214: 108260-108260 被引量:22
标识
DOI:10.1016/j.compag.2023.108260
摘要

Crops' above-ground biomass (AGB) is a crucial indicator that reflects crop health and predicts crop yield. However, using only optical vegetation indices (VIs) can produce inaccurate AGB estimates due to differences in crop varieties, growth stages, and measurement environments. Given the advantages of unmanned aerial vehicle (UAV) RGB and hyperspectral image fusion, this study evaluated the performance of multi-source remote sensing data for estimating potato AGB at multiple growth stages. In 2019, this study conducted potato trials with different varieties, fertilization levels, and planting densities at the Xiaotangshan Experiment Base (Beijing). UAV image and AGB data of potato three main stages were obtained from ground survey work. High-frequency information of the potato canopy was extracted from RGB images using discrete wavelet transform (DWT). VIs and wavelet energy coefficients were extracted from hyperspectral images using continuous wavelet transform (CWT). The linear relationships between potato AGB with VIs, high-frequency information, and wavelet coefficients were analyzed. Potato AGB estimation models were constructed based on single and multiple types of variables using multiple stepwise regression (MSR) and random forest (RF) models, respectively. This work showed the following results: (i) High-frequency information and wavelet coefficients were more sensitive to potato multi-growth stage AGB than VIs, and the latter were the most sensitive. (ii) Using VIs, high-frequency information, or wavelet coefficients separately to estimate the potato multi-growth stage AGB resulted in higher error and lower model accuracy. (iii) Combining VIs with either high-frequency information or wavelet coefficients improved the accuracy of AGB estimation, which was further improved by combining high-frequency information with wavelet coefficients. (iv) Combining VIs with both high-frequency information and wavelet coefficients provided the highest estimation accuracy using the MSR method. This combined AGB estimation model reduced the RMSE by 27%, 21%, and 16%, respectively, relative to VIs, high-frequency information, or wavelet coefficients alone. This result shows that the complementary advantages of multi-source UAV data can solve the challenge of insufficient AGB estimation by optical remote sensing. The work in this study provides remote sensing technology support to achieve potato crop growth monitoring and improve yield predictions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
情怀应助专心搞学术采纳,获得20
刚刚
刚刚
zeke发布了新的文献求助10
刚刚
不爱吃糖发布了新的文献求助10
1秒前
852应助冷傲迎梦采纳,获得10
2秒前
陶醉觅夏发布了新的文献求助200
3秒前
3秒前
exile完成签到,获得积分10
4秒前
朱一龙发布了新的文献求助10
4秒前
mawenting完成签到 ,获得积分10
6秒前
zeke完成签到,获得积分10
7秒前
科研通AI5应助solobang采纳,获得10
8秒前
8秒前
小宇OvO发布了新的文献求助10
9秒前
9秒前
忘羡222完成签到,获得积分10
9秒前
专一发布了新的文献求助10
11秒前
跳跃曼文完成签到,获得积分10
12秒前
干将莫邪完成签到,获得积分10
13秒前
SYLH应助exile采纳,获得10
13秒前
小二郎应助魔幻的从梦采纳,获得10
14秒前
15秒前
雪鸽鸽发布了新的文献求助10
15秒前
16秒前
17秒前
17秒前
18秒前
科研通AI5应助朱一龙采纳,获得30
19秒前
SharonDu完成签到 ,获得积分10
20秒前
ayin完成签到,获得积分10
20秒前
21秒前
21秒前
啦啦啦完成签到,获得积分10
21秒前
coffee发布了新的文献求助10
22秒前
22秒前
科研混子发布了新的文献求助10
22秒前
咿咿呀呀发布了新的文献求助10
22秒前
酷酷碧发布了新的文献求助10
24秒前
飘逸宛丝完成签到,获得积分10
25秒前
qzaima发布了新的文献求助10
25秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527990
求助须知:如何正确求助?哪些是违规求助? 3108173
关于积分的说明 9287913
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540119
邀请新用户注册赠送积分活动 716941
科研通“疑难数据库(出版商)”最低求助积分说明 709824