3D multi-scale feature extraction and recalibration network for spinal structure and lesion segmentation

分割 医学 人工智能 计算机科学 深度学习 卷积神经网络 磁共振成像 特征(语言学) 模式识别(心理学) 放射科 语言学 哲学
作者
Hongjie Wang,Yingjin Chen,Tao Jiang,Haiyun Bian,Xing Shen
出处
期刊:Acta Radiologica [SAGE]
卷期号:64 (12): 3015-3023
标识
DOI:10.1177/02841851231204214
摘要

Background Automatic segmentation has emerged as a promising technique for the diagnosis of spinal conditions. Purpose To design and evaluate a deep convolution network for segmenting the intervertebral disc, spinal canal, facet joint, and herniated disk on magnetic resonance imaging (MRI) scans. Material and Methods MRI scans of 70 patients with disc herniation were gathered and manually annotated by radiologists. A novel deep neural network was developed, comprising 3D squeeze-and-excitation blocks and multi-scale feature extraction blocks for automated segmentation of spinal structure and lesion. To address the issue of class imbalance, a weighted cross-entropy loss was introduced for training. In addition, semi-supervision segmentation was accomplished to reduce annotation labor cost. Results The proposed model achieved 77.67% mean intersection over union, with 9.56% and 11.11% gains over typical V-Net and U-Net respectively, outperforming the other models in ablation experiments. In addition, the semi-supervision segmentation method was proven to work. Conclusion The 3D multi-scale feature extraction and recalibration network achieved an excellent segmentation performance of intervertebral disc, spinal canal, facet joint, and herniated disk, outperforming typical encoder-decoder networks.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
赘婿应助科研通管家采纳,获得30
刚刚
刚刚
shouyu29应助科研通管家采纳,获得10
刚刚
刚刚
顾闭月发布了新的文献求助10
刚刚
刚刚
活力绮兰应助科研通管家采纳,获得10
1秒前
斯文败类应助科研通管家采纳,获得10
1秒前
1秒前
栀清完成签到,获得积分20
1秒前
小W爱吃梨完成签到,获得积分10
3秒前
3秒前
栀清发布了新的文献求助10
3秒前
zss完成签到 ,获得积分10
4秒前
4秒前
张无忌发布了新的文献求助30
5秒前
6秒前
wocao完成签到 ,获得积分10
9秒前
卡卡发布了新的文献求助10
9秒前
10秒前
aa完成签到,获得积分10
10秒前
昵称什么的不重要啦完成签到 ,获得积分10
10秒前
甜筒完成签到 ,获得积分10
10秒前
兴奋的问旋应助Li猪猪采纳,获得10
11秒前
钰c完成签到,获得积分10
12秒前
心灵美的白易完成签到,获得积分10
12秒前
勤劳冰烟完成签到,获得积分10
14秒前
雨雾完成签到,获得积分10
14秒前
斯文败类应助凶狠的乐巧采纳,获得10
14秒前
14秒前
生言生语完成签到,获得积分10
14秒前
alick发布了新的文献求助10
15秒前
钰c发布了新的文献求助10
15秒前
Maggie完成签到 ,获得积分10
15秒前
四月是一只爱猫的羊完成签到,获得积分10
15秒前
16秒前
16秒前
17秒前
打打应助嘟嘟请让一让采纳,获得10
17秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527884
求助须知:如何正确求助?哪些是违规求助? 3108006
关于积分的说明 9287444
捐赠科研通 2805757
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709794