From Global to Local: Multi-Scale Out-of-Distribution Detection

判别式 计算机科学 成对比较 人工智能 模式识别(心理学) 代表(政治) 杂乱 机器学习 电信 雷达 政治 政治学 法学
作者
Ji Zhang,Lianli Gao,Bingguang Hao,Hao Huang,Jingkuan Song,Heng Tao Shen
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:32: 6115-6128 被引量:10
标识
DOI:10.1109/tip.2023.3328478
摘要

Out-of-distribution (OOD) detection aims to detect "unknown" data whose labels have not been seen during the in-distribution (ID) training process. Recent progress in representation learning gives rise to distance-based OOD detection that recognizes inputs as ID/OOD according to their relative distances to the training data of ID classes. Previous approaches calculate pairwise distances relying only on global image representations, which can be sub-optimal as the inevitable background clutter and intra-class variation may drive image-level representations from the same ID class far apart in a given representation space. In this work, we overcome this challenge by proposing Multi-scale OOD DEtection (MODE), a first framework leveraging both global visual information and local region details of images to maximally benefit OOD detection. Specifically, we first find that existing models pretrained by off-the-shelf cross-entropy or contrastive losses are incompetent to capture valuable local representations for MODE, due to the scale-discrepancy between the ID training and OOD detection processes. To mitigate this issue and encourage locally discriminative representations in ID training, we propose Attention-based Local PropAgation (ALPA), a trainable objective that exploits a cross-attention mechanism to align and highlight the local regions of the target objects for pairwise examples. During test-time OOD detection, a Cross-Scale Decision (CSD) function is further devised on the most discriminative multi-scale representations to distinguish ID/OOD data more faithfully. We demonstrate the effectiveness and flexibility of MODE on several benchmarks - on average, MODE outperforms the previous state-of-the-art by up to 19.24% in FPR, 2.77% in AUROC. Code is available at https://github.com/JimZAI/MODE-OOD.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
1秒前
newman完成签到,获得积分10
1秒前
1秒前
不如无言发布了新的文献求助10
1秒前
小蘑菇应助家伟采纳,获得10
1秒前
1秒前
玛尼完成签到,获得积分10
2秒前
2秒前
2秒前
Yw_M完成签到,获得积分10
2秒前
3秒前
3秒前
dsfsd完成签到,获得积分10
3秒前
liu发布了新的文献求助10
3秒前
胖头鱼发布了新的文献求助30
4秒前
摆烂小子发布了新的文献求助10
4秒前
研友_LNBW5L发布了新的文献求助10
4秒前
4秒前
啦啦啦l发布了新的文献求助10
4秒前
吉坡发布了新的文献求助10
4秒前
肖守玉完成签到,获得积分10
4秒前
梦幻发布了新的文献求助10
4秒前
ergatoid发布了新的文献求助10
5秒前
周哥发布了新的文献求助10
5秒前
sandman发布了新的文献求助30
6秒前
Mint发布了新的文献求助10
6秒前
6秒前
Aubrey完成签到,获得积分10
6秒前
6秒前
xinxin发布了新的文献求助30
6秒前
more发布了新的文献求助10
7秒前
二般人完成签到,获得积分10
7秒前
QixuGuo发布了新的文献求助10
7秒前
123完成签到,获得积分20
7秒前
7788999完成签到,获得积分10
8秒前
8秒前
乐观小鸽子完成签到,获得积分20
8秒前
Aminoacid发布了新的文献求助10
9秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4009429
求助须知:如何正确求助?哪些是违规求助? 3549323
关于积分的说明 11301690
捐赠科研通 3283833
什么是DOI,文献DOI怎么找? 1810413
邀请新用户注册赠送积分活动 886275
科研通“疑难数据库(出版商)”最低求助积分说明 811301