亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

From Global to Local: Multi-Scale Out-of-Distribution Detection

判别式 计算机科学 成对比较 人工智能 模式识别(心理学) 代表(政治) 杂乱 机器学习 电信 雷达 政治 政治学 法学
作者
Ji Zhang,Lianli Gao,Bingguang Hao,Hao Huang,Jingkuan Song,Heng Tao Shen
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:32: 6115-6128 被引量:10
标识
DOI:10.1109/tip.2023.3328478
摘要

Out-of-distribution (OOD) detection aims to detect "unknown" data whose labels have not been seen during the in-distribution (ID) training process. Recent progress in representation learning gives rise to distance-based OOD detection that recognizes inputs as ID/OOD according to their relative distances to the training data of ID classes. Previous approaches calculate pairwise distances relying only on global image representations, which can be sub-optimal as the inevitable background clutter and intra-class variation may drive image-level representations from the same ID class far apart in a given representation space. In this work, we overcome this challenge by proposing Multi-scale OOD DEtection (MODE), a first framework leveraging both global visual information and local region details of images to maximally benefit OOD detection. Specifically, we first find that existing models pretrained by off-the-shelf cross-entropy or contrastive losses are incompetent to capture valuable local representations for MODE, due to the scale-discrepancy between the ID training and OOD detection processes. To mitigate this issue and encourage locally discriminative representations in ID training, we propose Attention-based Local PropAgation (ALPA), a trainable objective that exploits a cross-attention mechanism to align and highlight the local regions of the target objects for pairwise examples. During test-time OOD detection, a Cross-Scale Decision (CSD) function is further devised on the most discriminative multi-scale representations to distinguish ID/OOD data more faithfully. We demonstrate the effectiveness and flexibility of MODE on several benchmarks - on average, MODE outperforms the previous state-of-the-art by up to 19.24% in FPR, 2.77% in AUROC. Code is available at https://github.com/JimZAI/MODE-OOD.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
张张完成签到 ,获得积分10
刚刚
徐小徐完成签到,获得积分20
刚刚
开胃咖喱完成签到,获得积分10
1秒前
2秒前
Olivia发布了新的文献求助10
2秒前
4秒前
celi完成签到,获得积分10
8秒前
hhh发布了新的文献求助10
8秒前
elliotzzz发布了新的文献求助10
9秒前
积极的誉完成签到,获得积分10
10秒前
爆米花应助无端采纳,获得10
14秒前
kk_1315完成签到,获得积分0
16秒前
16秒前
WZQ发布了新的文献求助10
21秒前
福娃哇完成签到 ,获得积分10
28秒前
30秒前
chaoshen发布了新的文献求助10
37秒前
38秒前
jyy完成签到,获得积分10
45秒前
Jasper应助elliotzzz采纳,获得30
48秒前
49秒前
50秒前
50秒前
53秒前
顾矜应助科研通管家采纳,获得10
53秒前
浮游应助科研通管家采纳,获得10
53秒前
浮游应助科研通管家采纳,获得10
53秒前
Criminology34应助科研通管家采纳,获得10
53秒前
浮游应助科研通管家采纳,获得10
53秒前
53秒前
Luckydan发布了新的文献求助10
55秒前
1234发布了新的文献求助10
55秒前
Ava应助矮小的猕猴桃采纳,获得10
55秒前
110o发布了新的文献求助10
58秒前
Olivia完成签到,获得积分10
1分钟前
执着的天使完成签到 ,获得积分10
1分钟前
1分钟前
110o完成签到,获得积分10
1分钟前
orixero应助Olivia采纳,获得10
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 901
Item Response Theory 800
Identifying dimensions of interest to support learning in disengaged students: the MINE project 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5426294
求助须知:如何正确求助?哪些是违规求助? 4540112
关于积分的说明 14171650
捐赠科研通 4457871
什么是DOI,文献DOI怎么找? 2444698
邀请新用户注册赠送积分活动 1435666
关于科研通互助平台的介绍 1413164