已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Assessing industrial wastewater effluent toxicity using boosting algorithms in machine learning: A case study on ecotoxicity prediction and control strategy development

生态毒性 流出物 废水 Boosting(机器学习) 环境科学 污水处理 水质 梯度升压 机器学习 环境化学 环境工程 计算机科学 毒性 生物 化学 生态学 随机森林 有机化学
作者
Nguyen Duc Viet,Jihae Park,Hojun Lee,Taejun Han,Di Wu
出处
期刊:Environmental Pollution [Elsevier]
卷期号:341: 123017-123017 被引量:7
标识
DOI:10.1016/j.envpol.2023.123017
摘要

Trace heavy metals have a tendency to persist in the effluent of industrial wastewater treatment facilities, leading to toxic effects on downstream water bodies. Traditional assessment methods relied on animal testing, but ethical concerns have rendered them unacceptable. An alternative solution is to evaluate wastewater toxicity using trophic-level aquatic organisms as bioassays. However, these bioassay methods involve costly and time-consuming chemical and biological analytical experiments. In this study, an artificial intelligence-powered water quality assessment (AiWA) approach is proposed for predicting industrial effluent ecotoxicity to further enhance the quick and cost-effective ecotoxicity assessment process. Initially, 99 samples were collected from industrial wastewater treatment plants representing 21 different industries in the Republic of Korea. Fourteen parameters were measured, encompassing both physicochemical and ecotoxicological aspects. Boosting algorithms, especially extreme gradient boosting (XGBoost) and adaptive boosting (AdaBoost), were employed for model development. XGBoost outperformed AdaBoost in terms of model performance. Feature selection analysis revealed that conductivity, copper, lead, selenium, pH, and zinc concentrations were the most suitable inputs for training the boosting model. The innovated XGBoost-based AiWA model demonstrated significantly higher performance (i.e., up to 80%) compared to conventional models with an R2 value of exceeding 0.94 and root mean square error of 3.5 toxicity unit for predicting the integrated toxicity unit (ITU). Additionally, pH and conductivity emerged as crucial indicators for reflecting ecotoxicity levels. Specially, this case study indicated that non-toxic/directly dischargeable levels (TU ≤ 1) were achieved when the pH ranged from 6.8 to 8.4 and the conductivity remained below 1651 μS/cm. These findings are expected to facilitate rapid and cost-effective detection of heavy metal ecotoxicity in industrial wastewater effluents, aiding decision-making in wastewater management.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
sssss发布了新的文献求助10
3秒前
grozta完成签到 ,获得积分10
4秒前
趣多多发布了新的文献求助10
5秒前
相识完成签到,获得积分10
5秒前
希望天下0贩的0应助sss采纳,获得10
6秒前
6秒前
给我一瓶魔法药水完成签到,获得积分10
7秒前
红星路吃饼子的派大星完成签到 ,获得积分10
7秒前
9秒前
Dasha完成签到,获得积分10
9秒前
壶壶壶完成签到 ,获得积分10
13秒前
13秒前
14秒前
kkkay完成签到,获得积分10
14秒前
Emma应助趣多多采纳,获得10
14秒前
科研通AI2S应助趣多多采纳,获得30
14秒前
15秒前
二十八化生完成签到 ,获得积分10
16秒前
yuaner发布了新的文献求助10
17秒前
17秒前
18秒前
19秒前
蜻蜓队长前来报道7完成签到,获得积分10
19秒前
小柒发布了新的文献求助10
20秒前
Blackmoon发布了新的文献求助30
21秒前
23秒前
应见惯发布了新的文献求助10
23秒前
宝儿姐完成签到,获得积分10
24秒前
mumu发布了新的文献求助10
26秒前
5866完成签到,获得积分10
26秒前
韶光与猫完成签到,获得积分10
28秒前
华仔应助yuaner采纳,获得10
29秒前
30秒前
30秒前
千寻完成签到,获得积分10
31秒前
桐桐应助dasdsa采纳,获得10
31秒前
CodeCraft应助薛定谔的猫采纳,获得10
32秒前
Sam发布了新的文献求助10
34秒前
高分求助中
Lire en communiste 1000
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 800
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 700
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
Becoming: An Introduction to Jung's Concept of Individuation 600
Evolution 3rd edition 500
Die Gottesanbeterin: Mantis religiosa: 656 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3171230
求助须知:如何正确求助?哪些是违规求助? 2822135
关于积分的说明 7938200
捐赠科研通 2482633
什么是DOI,文献DOI怎么找? 1322678
科研通“疑难数据库(出版商)”最低求助积分说明 633676
版权声明 602627