Assessing industrial wastewater effluent toxicity using boosting algorithms in machine learning: A case study on ecotoxicity prediction and control strategy development

生态毒性 流出物 废水 Boosting(机器学习) 环境科学 污水处理 水质 梯度升压 机器学习 环境化学 环境工程 计算机科学 毒性 生物 化学 生态学 随机森林 有机化学
作者
Nguyen Duc Viet,Jihae Park,Hojun Lee,Taejun Han,Di Wu
出处
期刊:Environmental Pollution [Elsevier]
卷期号:341: 123017-123017 被引量:7
标识
DOI:10.1016/j.envpol.2023.123017
摘要

Trace heavy metals have a tendency to persist in the effluent of industrial wastewater treatment facilities, leading to toxic effects on downstream water bodies. Traditional assessment methods relied on animal testing, but ethical concerns have rendered them unacceptable. An alternative solution is to evaluate wastewater toxicity using trophic-level aquatic organisms as bioassays. However, these bioassay methods involve costly and time-consuming chemical and biological analytical experiments. In this study, an artificial intelligence-powered water quality assessment (AiWA) approach is proposed for predicting industrial effluent ecotoxicity to further enhance the quick and cost-effective ecotoxicity assessment process. Initially, 99 samples were collected from industrial wastewater treatment plants representing 21 different industries in the Republic of Korea. Fourteen parameters were measured, encompassing both physicochemical and ecotoxicological aspects. Boosting algorithms, especially extreme gradient boosting (XGBoost) and adaptive boosting (AdaBoost), were employed for model development. XGBoost outperformed AdaBoost in terms of model performance. Feature selection analysis revealed that conductivity, copper, lead, selenium, pH, and zinc concentrations were the most suitable inputs for training the boosting model. The innovated XGBoost-based AiWA model demonstrated significantly higher performance (i.e., up to 80%) compared to conventional models with an R2 value of exceeding 0.94 and root mean square error of 3.5 toxicity unit for predicting the integrated toxicity unit (ITU). Additionally, pH and conductivity emerged as crucial indicators for reflecting ecotoxicity levels. Specially, this case study indicated that non-toxic/directly dischargeable levels (TU ≤ 1) were achieved when the pH ranged from 6.8 to 8.4 and the conductivity remained below 1651 μS/cm. These findings are expected to facilitate rapid and cost-effective detection of heavy metal ecotoxicity in industrial wastewater effluents, aiding decision-making in wastewater management.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
酸奶烤着吃完成签到,获得积分10
刚刚
Owen应助391X小king采纳,获得10
1秒前
1秒前
小古完成签到,获得积分10
2秒前
量子星尘发布了新的文献求助10
2秒前
梦幻发布了新的文献求助10
3秒前
楚博完成签到,获得积分10
3秒前
Am1r完成签到,获得积分10
3秒前
hannah发布了新的文献求助20
4秒前
赵康康发布了新的文献求助10
4秒前
蒸盐粥发布了新的文献求助10
7秒前
7秒前
9秒前
10秒前
实验顺利完成签到,获得积分10
11秒前
不期而遇发布了新的文献求助10
11秒前
11秒前
我是老大应助拼搏的无心采纳,获得10
12秒前
13秒前
13秒前
烟花应助hay采纳,获得10
13秒前
量子星尘发布了新的文献求助10
14秒前
14秒前
XUXU发布了新的文献求助10
14秒前
老黄鱼完成签到,获得积分10
15秒前
16秒前
量子星尘发布了新的文献求助10
16秒前
顺心的海菡完成签到,获得积分10
16秒前
亦犹未进发布了新的文献求助10
18秒前
Ljq发布了新的文献求助10
19秒前
ahhh发布了新的文献求助10
19秒前
虚拟的鼠标完成签到,获得积分10
20秒前
梦幻完成签到 ,获得积分10
21秒前
23秒前
pengze发布了新的文献求助10
25秒前
25秒前
在水一方应助科研通管家采纳,获得10
26秒前
在水一方应助科研通管家采纳,获得10
26秒前
领导范儿应助科研通管家采纳,获得10
26秒前
BowieHuang应助科研通管家采纳,获得10
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Russian Foreign Policy: Change and Continuity 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5729235
求助须知:如何正确求助?哪些是违规求助? 5317147
关于积分的说明 15316199
捐赠科研通 4876228
什么是DOI,文献DOI怎么找? 2619311
邀请新用户注册赠送积分活动 1568858
关于科研通互助平台的介绍 1525365