Assessing industrial wastewater effluent toxicity using boosting algorithms in machine learning: A case study on ecotoxicity prediction and control strategy development

生态毒性 流出物 废水 Boosting(机器学习) 环境科学 污水处理 水质 梯度升压 机器学习 环境化学 环境工程 计算机科学 毒性 生物 化学 生态学 随机森林 有机化学
作者
Nguyen Duc Viet,Jihae Park,Hojun Lee,Taejun Han,Di Wu
出处
期刊:Environmental Pollution [Elsevier BV]
卷期号:341: 123017-123017 被引量:7
标识
DOI:10.1016/j.envpol.2023.123017
摘要

Trace heavy metals have a tendency to persist in the effluent of industrial wastewater treatment facilities, leading to toxic effects on downstream water bodies. Traditional assessment methods relied on animal testing, but ethical concerns have rendered them unacceptable. An alternative solution is to evaluate wastewater toxicity using trophic-level aquatic organisms as bioassays. However, these bioassay methods involve costly and time-consuming chemical and biological analytical experiments. In this study, an artificial intelligence-powered water quality assessment (AiWA) approach is proposed for predicting industrial effluent ecotoxicity to further enhance the quick and cost-effective ecotoxicity assessment process. Initially, 99 samples were collected from industrial wastewater treatment plants representing 21 different industries in the Republic of Korea. Fourteen parameters were measured, encompassing both physicochemical and ecotoxicological aspects. Boosting algorithms, especially extreme gradient boosting (XGBoost) and adaptive boosting (AdaBoost), were employed for model development. XGBoost outperformed AdaBoost in terms of model performance. Feature selection analysis revealed that conductivity, copper, lead, selenium, pH, and zinc concentrations were the most suitable inputs for training the boosting model. The innovated XGBoost-based AiWA model demonstrated significantly higher performance (i.e., up to 80%) compared to conventional models with an R2 value of exceeding 0.94 and root mean square error of 3.5 toxicity unit for predicting the integrated toxicity unit (ITU). Additionally, pH and conductivity emerged as crucial indicators for reflecting ecotoxicity levels. Specially, this case study indicated that non-toxic/directly dischargeable levels (TU ≤ 1) were achieved when the pH ranged from 6.8 to 8.4 and the conductivity remained below 1651 μS/cm. These findings are expected to facilitate rapid and cost-effective detection of heavy metal ecotoxicity in industrial wastewater effluents, aiding decision-making in wastewater management.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
excalibur发布了新的文献求助10
1秒前
cyn0762完成签到,获得积分10
1秒前
共享精神应助malenia采纳,获得10
1秒前
2秒前
隐形曼青应助wzc采纳,获得10
2秒前
华仔应助愤怒的寻梅采纳,获得10
2秒前
勤恳的听兰完成签到,获得积分10
2秒前
韧战发布了新的文献求助10
3秒前
淡然亦云发布了新的文献求助10
5秒前
linnya发布了新的文献求助10
6秒前
Yuantian发布了新的文献求助20
7秒前
8秒前
9秒前
shijiamian完成签到,获得积分10
9秒前
9秒前
10秒前
limz完成签到,获得积分10
10秒前
蒸蒸日上完成签到 ,获得积分10
10秒前
JamesPei应助sanL采纳,获得10
13秒前
13秒前
zzww发布了新的文献求助10
13秒前
阳光的霸发布了新的文献求助10
13秒前
wzc发布了新的文献求助10
14秒前
14秒前
King完成签到 ,获得积分10
14秒前
15秒前
瘦瘦凌晴发布了新的文献求助10
15秒前
量子星尘发布了新的文献求助10
16秒前
科研通AI5应助Bown采纳,获得10
16秒前
16秒前
17秒前
情怀应助將雨采纳,获得10
18秒前
18秒前
欣喜从波发布了新的文献求助10
20秒前
ychen发布了新的文献求助10
20秒前
20秒前
21秒前
21秒前
22秒前
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
Thomas Hobbes' Mechanical Conception of Nature 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5088822
求助须知:如何正确求助?哪些是违规求助? 4303677
关于积分的说明 13412175
捐赠科研通 4129366
什么是DOI,文献DOI怎么找? 2261427
邀请新用户注册赠送积分活动 1265480
关于科研通互助平台的介绍 1200010