Assessing industrial wastewater effluent toxicity using boosting algorithms in machine learning: A case study on ecotoxicity prediction and control strategy development

生态毒性 流出物 废水 Boosting(机器学习) 环境科学 污水处理 水质 梯度升压 机器学习 环境化学 环境工程 计算机科学 毒性 生物 化学 生态学 随机森林 有机化学
作者
Nguyen Duc Viet,Jihae Park,Hojun Lee,Taejun Han,Di Wu
出处
期刊:Environmental Pollution [Elsevier]
卷期号:341: 123017-123017 被引量:7
标识
DOI:10.1016/j.envpol.2023.123017
摘要

Trace heavy metals have a tendency to persist in the effluent of industrial wastewater treatment facilities, leading to toxic effects on downstream water bodies. Traditional assessment methods relied on animal testing, but ethical concerns have rendered them unacceptable. An alternative solution is to evaluate wastewater toxicity using trophic-level aquatic organisms as bioassays. However, these bioassay methods involve costly and time-consuming chemical and biological analytical experiments. In this study, an artificial intelligence-powered water quality assessment (AiWA) approach is proposed for predicting industrial effluent ecotoxicity to further enhance the quick and cost-effective ecotoxicity assessment process. Initially, 99 samples were collected from industrial wastewater treatment plants representing 21 different industries in the Republic of Korea. Fourteen parameters were measured, encompassing both physicochemical and ecotoxicological aspects. Boosting algorithms, especially extreme gradient boosting (XGBoost) and adaptive boosting (AdaBoost), were employed for model development. XGBoost outperformed AdaBoost in terms of model performance. Feature selection analysis revealed that conductivity, copper, lead, selenium, pH, and zinc concentrations were the most suitable inputs for training the boosting model. The innovated XGBoost-based AiWA model demonstrated significantly higher performance (i.e., up to 80%) compared to conventional models with an R2 value of exceeding 0.94 and root mean square error of 3.5 toxicity unit for predicting the integrated toxicity unit (ITU). Additionally, pH and conductivity emerged as crucial indicators for reflecting ecotoxicity levels. Specially, this case study indicated that non-toxic/directly dischargeable levels (TU ≤ 1) were achieved when the pH ranged from 6.8 to 8.4 and the conductivity remained below 1651 μS/cm. These findings are expected to facilitate rapid and cost-effective detection of heavy metal ecotoxicity in industrial wastewater effluents, aiding decision-making in wastewater management.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
孙淳发布了新的文献求助10
刚刚
1秒前
1秒前
伯赏诗霜发布了新的文献求助10
1秒前
2秒前
2秒前
程哲瀚完成签到,获得积分10
2秒前
Brennan完成签到,获得积分10
3秒前
4秒前
4秒前
笨笨善若发布了新的文献求助10
5秒前
5秒前
6秒前
樘樘完成签到,获得积分10
6秒前
一个有点长的序完成签到 ,获得积分10
7秒前
孙淳完成签到,获得积分10
8秒前
8秒前
YYJ25发布了新的文献求助10
9秒前
Jzhang应助tmpstlml采纳,获得10
10秒前
微笑的南露完成签到 ,获得积分10
10秒前
豌豆关注了科研通微信公众号
10秒前
13秒前
笨笨善若完成签到,获得积分10
15秒前
hs完成签到,获得积分20
15秒前
ZHANGMANLI0422完成签到,获得积分10
15秒前
susu关注了科研通微信公众号
17秒前
DYuH23完成签到,获得积分10
18秒前
19秒前
爱静静应助DHL采纳,获得10
19秒前
19秒前
sunny661104完成签到 ,获得积分10
20秒前
简单完成签到 ,获得积分10
20秒前
尘林发布了新的文献求助10
20秒前
Z-先森完成签到,获得积分0
21秒前
苏源智发布了新的文献求助10
21秒前
伯赏诗霜完成签到,获得积分10
22秒前
NN应助LIn采纳,获得10
23秒前
23秒前
超级无敌学术苦瓜完成签到,获得积分10
23秒前
23秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527998
求助须知:如何正确求助?哪些是违规求助? 3108225
关于积分的说明 9288086
捐赠科研通 2805889
什么是DOI,文献DOI怎么找? 1540195
邀请新用户注册赠送积分活动 716950
科研通“疑难数据库(出版商)”最低求助积分说明 709849