Assessing industrial wastewater effluent toxicity using boosting algorithms in machine learning: A case study on ecotoxicity prediction and control strategy development

生态毒性 流出物 废水 Boosting(机器学习) 环境科学 污水处理 水质 梯度升压 机器学习 环境化学 环境工程 计算机科学 毒性 生物 化学 生态学 随机森林 有机化学
作者
Nguyen Duc Viet,Jihae Park,Hojun Lee,Taejun Han,Di Wu
出处
期刊:Environmental Pollution [Elsevier BV]
卷期号:341: 123017-123017 被引量:7
标识
DOI:10.1016/j.envpol.2023.123017
摘要

Trace heavy metals have a tendency to persist in the effluent of industrial wastewater treatment facilities, leading to toxic effects on downstream water bodies. Traditional assessment methods relied on animal testing, but ethical concerns have rendered them unacceptable. An alternative solution is to evaluate wastewater toxicity using trophic-level aquatic organisms as bioassays. However, these bioassay methods involve costly and time-consuming chemical and biological analytical experiments. In this study, an artificial intelligence-powered water quality assessment (AiWA) approach is proposed for predicting industrial effluent ecotoxicity to further enhance the quick and cost-effective ecotoxicity assessment process. Initially, 99 samples were collected from industrial wastewater treatment plants representing 21 different industries in the Republic of Korea. Fourteen parameters were measured, encompassing both physicochemical and ecotoxicological aspects. Boosting algorithms, especially extreme gradient boosting (XGBoost) and adaptive boosting (AdaBoost), were employed for model development. XGBoost outperformed AdaBoost in terms of model performance. Feature selection analysis revealed that conductivity, copper, lead, selenium, pH, and zinc concentrations were the most suitable inputs for training the boosting model. The innovated XGBoost-based AiWA model demonstrated significantly higher performance (i.e., up to 80%) compared to conventional models with an R2 value of exceeding 0.94 and root mean square error of 3.5 toxicity unit for predicting the integrated toxicity unit (ITU). Additionally, pH and conductivity emerged as crucial indicators for reflecting ecotoxicity levels. Specially, this case study indicated that non-toxic/directly dischargeable levels (TU ≤ 1) were achieved when the pH ranged from 6.8 to 8.4 and the conductivity remained below 1651 μS/cm. These findings are expected to facilitate rapid and cost-effective detection of heavy metal ecotoxicity in industrial wastewater effluents, aiding decision-making in wastewater management.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
4秒前
熊i发布了新的文献求助10
5秒前
5秒前
5秒前
6秒前
7秒前
请假了发布了新的文献求助10
9秒前
lalala发布了新的文献求助10
9秒前
传奇3应助天真忆文采纳,获得10
10秒前
10秒前
乖加油发布了新的文献求助10
11秒前
夏之发布了新的文献求助50
12秒前
14秒前
量子星尘发布了新的文献求助10
15秒前
lili完成签到 ,获得积分10
17秒前
萤火虫啦啦完成签到,获得积分20
18秒前
华仔应助Singularity采纳,获得10
18秒前
baibaibai完成签到,获得积分10
18秒前
脑洞疼应助耍酷玉米采纳,获得10
19秒前
于鑫发布了新的文献求助10
20秒前
20秒前
20秒前
科目三应助乖加油采纳,获得10
22秒前
思源应助Parsifal采纳,获得10
22秒前
马麻薯完成签到,获得积分10
22秒前
23秒前
24秒前
果实发布了新的文献求助10
25秒前
博修发布了新的文献求助30
25秒前
耍酷玉米完成签到,获得积分10
26秒前
早日毕业佳完成签到,获得积分10
26秒前
雪落你看不见完成签到,获得积分10
26秒前
我是老大应助wuliww采纳,获得10
27秒前
28秒前
28秒前
Zac发布了新的文献求助10
29秒前
乖加油完成签到,获得积分10
29秒前
30秒前
干净之槐完成签到,获得积分10
31秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3960985
求助须知:如何正确求助?哪些是违规求助? 3507215
关于积分的说明 11134512
捐赠科研通 3239640
什么是DOI,文献DOI怎么找? 1790273
邀请新用户注册赠送积分活动 872328
科研通“疑难数据库(出版商)”最低求助积分说明 803149