Computational modeling studies on microfluidic fuel cell: A prospective review

微生物燃料电池 堆积 计算机科学 燃料电池 生化工程 电解质 建模与仿真 计算模型 质子交换膜燃料电池 计算流体力学 机械工程 纳米技术 功率(物理) 模拟 工程类 材料科学 发电 航空航天工程 电极 化学 物理 有机化学 量子力学 物理化学 化学工程
作者
Baoxin Wu,Xinhai Xu,Guangzhong Dong,Mingming Zhang,Shijing Luo,Dennis Y.C. Leung,Yifei Wang
出处
期刊:Renewable & Sustainable Energy Reviews [Elsevier]
卷期号:191: 114082-114082 被引量:4
标识
DOI:10.1016/j.rser.2023.114082
摘要

Microfluidic fuel cell (MFC) is a burgeoning category of micro fuel cell technology based on laminar flow electrolytes. The merits of MFC, such as the absence of membrane electrolyte, flexible reactants selection, and high electrolyte conductivity, have been attracting researchers to explore this frontier area over the past two decades. However, realizing practical applications of MFCs remains a tremendous challenge. Many research works have been done to expedite research progress and obtain results reflecting inner mechanism via computational modeling and simulation, the general procedure of which is introduced in this paper. These studies primarily investigate the effects of various geometrical and operational parameters on diverse cell performance metrics, such as open-circuit voltage, current and power densities, and fuel utilization efficiency. However, contradictory outcomes and conclusions may arise due to disparities in the structural and parametric characteristics among different MFC models. In this regard, this review comprehensively summarizes prior computational modeling studies on MFC technology, with specific emphasis on different cell components including microchannels, inlets and outlets, electrodes, etc., as well as effects of different operational conditions encompassing electrolyte input, cell vibration, gas bubbling, and gravity. In addition, other related studies involving paper-based MFCs, cell stacking, and twin models are also introduced. Lastly, the future research perspective on MFC computational modeling is proposed, including potential structural innovations and modeling methods. This review paper shows the big puzzle of MFC modeling, the missing part of which is worthy of further study in the future.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
跨材料完成签到,获得积分10
刚刚
WxChen发布了新的文献求助10
1秒前
祝顺遂完成签到,获得积分10
1秒前
1秒前
1秒前
2秒前
tianle完成签到,获得积分20
2秒前
Seven完成签到,获得积分10
3秒前
3秒前
3秒前
贤惠的迎夏完成签到,获得积分10
4秒前
Hello应助MARS采纳,获得10
4秒前
十里故清欢完成签到,获得积分10
4秒前
虾仁完成签到,获得积分10
4秒前
5秒前
lilac应助啦啦啦采纳,获得10
5秒前
gy关闭了gy文献求助
5秒前
MADKAI发布了新的文献求助10
5秒前
清秀的砖头完成签到,获得积分10
5秒前
小马甲应助等待的乐儿采纳,获得10
5秒前
CodeCraft应助萌萌采纳,获得10
6秒前
6秒前
6秒前
sv发布了新的文献求助10
6秒前
LIU发布了新的文献求助10
6秒前
7秒前
7秒前
Owen应助xiuxiu_27采纳,获得10
8秒前
iW完成签到 ,获得积分10
8秒前
9秒前
woommoow完成签到,获得积分10
9秒前
10秒前
10秒前
200303am发布了新的文献求助10
10秒前
10秒前
10秒前
开天神秀完成签到,获得积分10
11秒前
566完成签到,获得积分10
11秒前
jackysuen完成签到,获得积分10
11秒前
MARS完成签到,获得积分10
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759