Self-supervised Multimodal Graph Convolutional Network for collaborative filtering

计算机科学 人工智能 稳健性(进化) 机器学习 模式 图形 水准点(测量) 推荐系统 协同过滤 理论计算机科学 社会科学 生物化学 化学 大地测量学 社会学 基因 地理
作者
Sungjune Kim,Seongjun Yun,Jongwuk Lee,Gyusam Chang,Wonseok Roh,Dae-Neung Sohn,Jung‐Tae Lee,Hogun Park,Sangpil Kim
出处
期刊:Information Sciences [Elsevier BV]
卷期号:653: 119760-119760 被引量:3
标识
DOI:10.1016/j.ins.2023.119760
摘要

Collaborative filtering (CF) is a central solution for capturing various user-item relationships in building recommender systems. However, when the relationships are sparsely observed, it is challenging to obtain enough signals to infer precise user preferences. Recent studies have attempted to address the sparsity issue by incorporating multimodal information (e.g., image and text) into CF models. However, existing methods mainly focus on capturing modal-specific user preference with multiple unimodal graphs, ignoring the complex nature of user behavior, which is determined by an intricate fusion of multimodal information. Therefore, we develop a Self-supervised Multimodal Graph Convolutional Network (SMGCN), which aims to learn the cross-modal user preferences over multiple modalities with an expressive multimodal fusion on a single graph. More importantly, to facilitate and enhance multimodal fusion in SMGCN, we devise two novel self-supervised learning techniques. 1) Collaborative Multimodal Alignment (CMA) uses contrastive learning to align the domain-specific multimodal semantics with the user-item relational semantics. 2) Multimodal Consistency Regularization (MCR) alleviates the sensitivity on a certain modality and increases model robustness. The experimental results demonstrate that our model consistently outperforms advanced multimodal models on three benchmark datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
搜集达人应助科研通管家采纳,获得10
1秒前
研友_VZG7GZ应助科研通管家采纳,获得10
1秒前
pluto应助科研通管家采纳,获得10
1秒前
丘比特应助科研通管家采纳,获得10
1秒前
pluto应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
852应助科研通管家采纳,获得10
1秒前
汉堡包应助科研通管家采纳,获得10
2秒前
深情安青应助科研通管家采纳,获得10
2秒前
SYLH应助科研通管家采纳,获得10
2秒前
Lucas应助科研通管家采纳,获得10
2秒前
CodeCraft应助cheese采纳,获得10
2秒前
大模型应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
脑洞疼应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
2秒前
SYLH应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
852应助mneos采纳,获得10
3秒前
3秒前
4秒前
statsli完成签到,获得积分10
4秒前
小马甲应助Bminor采纳,获得10
4秒前
平淡爆米花完成签到,获得积分10
4秒前
aka2012发布了新的文献求助10
4秒前
阿聪发布了新的文献求助200
4秒前
4秒前
天天向上完成签到,获得积分10
4秒前
白好闻完成签到,获得积分10
5秒前
梦璃发布了新的文献求助10
5秒前
斯文败类应助xxx采纳,获得10
5秒前
5秒前
6秒前
luolur完成签到,获得积分10
6秒前
Lemon完成签到,获得积分10
6秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3951972
求助须知:如何正确求助?哪些是违规求助? 3497327
关于积分的说明 11086901
捐赠科研通 3228016
什么是DOI,文献DOI怎么找? 1784585
邀请新用户注册赠送积分活动 868794
科研通“疑难数据库(出版商)”最低求助积分说明 801180