材料科学
复合材料
陶瓷
断裂韧性
韧性
立方氧化锆
固化(化学)
抗弯强度
烧结
作者
Maoyin Li,Shuigen Huang,Evita Willems,Jeroen Soete,Masanao Inokoshi,Bart Van Meerbeek,Jef Vleugels,Fei Zhang
标识
DOI:10.1002/adma.202306764
摘要
Additive manufacturing (AM) of high-performance structural ceramic components with comparative strength and toughness as conventionally manufactured ceramics remains challenging. Here, a UV-curing approach is integrated in direct ink writing (DIW), taking advantage from DIW to enable an easy use of high solid-loading pastes and multi-layered materials with compositional changes; while, avoiding drying problems. UV-curable opaque zirconia-based slurries with a solid loading of 51 vol% are developed to fabricate dense and crack-free alumina-toughened zirconia (ATZ) containing 3 wt% alumina platelets. Importantly, a non-reactive diluent is added to relieve polymerization-induced internal stresses, avoid subsequent warping and cracking, and facilitate the de-binding. For the first time, UV-curing assisted DIW-printed ceramic after sintering reveals even better mechanical properties than that processed by a conventional pressing. This is attributed to the aligned alumina platelets, enhancing crack deflection and improving the fracture toughness from 6.8 ± 0.3 MPa m
科研通智能强力驱动
Strongly Powered by AbleSci AI