Brain tumor classification using the modified ResNet50 model based on transfer learning

计算机科学 人工智能 学习迁移 深度学习 清晰 机器学习 分割 生物化学 化学
作者
Arpit Kumar Sharma,Amita Nandal,Arvind Dhaka,Liang Zhou,Adi Alhudhaif,Fayadh Alenezi,Kemal Polat
出处
期刊:Biomedical Signal Processing and Control [Elsevier]
卷期号:86: 105299-105299 被引量:31
标识
DOI:10.1016/j.bspc.2023.105299
摘要

Brain tumour classification is essential for determining the type and grade and deciding on therapy appropriately. Several diagnostic methods are used in the therapeutic therapy to identify brain tumours. MRI, on the other hand, offers superior picture clarity, which is why specialists depend on it. Furthermore, detecting cancer through the manual division of brain tumours is a time-consuming, exhausting, and difficult job. The hand-designed outlines for planned brain tumour growth methods are present in the majority of the instances. Segmentation is a highly reliable and precise method for assessing therapy prognosis, planning, and outcomes. Artificial Intelligence (AI), Machine Learning (ML), and Deep Learning (DL) advancements have enabled us to investigate the illness with high precision in a short period of time. Such technologies have produced some remarkable results, particularly in the last twenty years. Such breakthroughs provide doctors with the ability to evaluate the human anatomy using high-resolution sections. The most recent approaches can improve diagnostic precision when examining patients using non-invasive means. This work introduces a brain tumour detection method. The model grows using ResNet50, feature extraction, and augmentation. CNN's pre-trained datasets are used to fine-tune transfer learning. The proposed design utilised elements of the ResNet50 model, removing the final layer and adding four additional layers to meet work conditions. This study uses the improved ResNet50 model to present a novel deep-learning approach based on a transfer learning technique for evaluating brain cancer categorisation accuracy. Performance metrics were used to evaluate the effectiveness of the proposed model, and the results were compared to those obtained using state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
pacify完成签到 ,获得积分10
1秒前
三百一十四完成签到 ,获得积分10
3秒前
爆米花完成签到,获得积分10
4秒前
ljh完成签到 ,获得积分10
6秒前
这个名字就比原来的好听完成签到,获得积分10
7秒前
hxpxp发布了新的文献求助10
11秒前
江十三完成签到,获得积分10
12秒前
chanyi完成签到,获得积分10
12秒前
蓝色条纹衫完成签到 ,获得积分10
13秒前
李健应助刘蓬勃采纳,获得10
14秒前
mads完成签到 ,获得积分10
14秒前
依人如梦完成签到 ,获得积分10
16秒前
18秒前
hxpxp完成签到,获得积分10
19秒前
经青寒完成签到 ,获得积分10
21秒前
阡陌完成签到,获得积分10
23秒前
自转无风完成签到,获得积分10
23秒前
善良青筠完成签到 ,获得积分10
24秒前
柒月完成签到 ,获得积分10
26秒前
樂酉完成签到 ,获得积分10
27秒前
happyccch完成签到 ,获得积分0
30秒前
鸢尾松茶完成签到 ,获得积分10
36秒前
khh完成签到 ,获得积分10
36秒前
nicheng完成签到 ,获得积分0
36秒前
蟲先生完成签到 ,获得积分10
38秒前
支雨泽完成签到,获得积分10
42秒前
Owen应助Brian采纳,获得10
43秒前
03210322完成签到 ,获得积分10
45秒前
NEO完成签到 ,获得积分10
46秒前
蓝莲花完成签到 ,获得积分10
47秒前
dlut0407完成签到,获得积分10
48秒前
mokucyan完成签到,获得积分10
49秒前
52秒前
Brian发布了新的文献求助10
56秒前
xuedan3000完成签到 ,获得积分10
58秒前
Ll完成签到 ,获得积分10
59秒前
心灵美鑫完成签到 ,获得积分10
59秒前
西红柿不吃皮完成签到 ,获得积分10
1分钟前
疯狂的绝山完成签到,获得积分10
1分钟前
柠栀完成签到 ,获得积分10
1分钟前
高分求助中
The late Devonian Standard Conodont Zonation 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3244791
求助须知:如何正确求助?哪些是违规求助? 2888434
关于积分的说明 8252939
捐赠科研通 2556941
什么是DOI,文献DOI怎么找? 1385522
科研通“疑难数据库(出版商)”最低求助积分说明 650176
邀请新用户注册赠送积分活动 626303