计算机科学
人工智能
学习迁移
深度学习
清晰
机器学习
分割
生物化学
化学
作者
Arpit Kumar Sharma,Arvind Dhaka,Arvind Dhaka,Liang Zhou,Adi Alhudhaif,Fayadh Alenezi,Kemal Polat
标识
DOI:10.1016/j.bspc.2023.105299
摘要
Brain tumour classification is essential for determining the type and grade and deciding on therapy appropriately. Several diagnostic methods are used in the therapeutic therapy to identify brain tumours. MRI, on the other hand, offers superior picture clarity, which is why specialists depend on it. Furthermore, detecting cancer through the manual division of brain tumours is a time-consuming, exhausting, and difficult job. The hand-designed outlines for planned brain tumour growth methods are present in the majority of the instances. Segmentation is a highly reliable and precise method for assessing therapy prognosis, planning, and outcomes. Artificial Intelligence (AI), Machine Learning (ML), and Deep Learning (DL) advancements have enabled us to investigate the illness with high precision in a short period of time. Such technologies have produced some remarkable results, particularly in the last twenty years. Such breakthroughs provide doctors with the ability to evaluate the human anatomy using high-resolution sections. The most recent approaches can improve diagnostic precision when examining patients using non-invasive means. This work introduces a brain tumour detection method. The model grows using ResNet50, feature extraction, and augmentation. CNN's pre-trained datasets are used to fine-tune transfer learning. The proposed design utilised elements of the ResNet50 model, removing the final layer and adding four additional layers to meet work conditions. This study uses the improved ResNet50 model to present a novel deep-learning approach based on a transfer learning technique for evaluating brain cancer categorisation accuracy. Performance metrics were used to evaluate the effectiveness of the proposed model, and the results were compared to those obtained using state-of-the-art methods.
科研通智能强力驱动
Strongly Powered by AbleSci AI