Brain tumor classification using the modified ResNet50 model based on transfer learning

计算机科学 人工智能 学习迁移 深度学习 清晰 机器学习 分割 生物化学 化学
作者
Arpit Kumar Sharma,Amita Nandal,Arvind Dhaka,Liang Zhou,Adi Alhudhaif,Fayadh Alenezi,Kemal Polat
出处
期刊:Biomedical Signal Processing and Control [Elsevier BV]
卷期号:86: 105299-105299 被引量:39
标识
DOI:10.1016/j.bspc.2023.105299
摘要

Brain tumour classification is essential for determining the type and grade and deciding on therapy appropriately. Several diagnostic methods are used in the therapeutic therapy to identify brain tumours. MRI, on the other hand, offers superior picture clarity, which is why specialists depend on it. Furthermore, detecting cancer through the manual division of brain tumours is a time-consuming, exhausting, and difficult job. The hand-designed outlines for planned brain tumour growth methods are present in the majority of the instances. Segmentation is a highly reliable and precise method for assessing therapy prognosis, planning, and outcomes. Artificial Intelligence (AI), Machine Learning (ML), and Deep Learning (DL) advancements have enabled us to investigate the illness with high precision in a short period of time. Such technologies have produced some remarkable results, particularly in the last twenty years. Such breakthroughs provide doctors with the ability to evaluate the human anatomy using high-resolution sections. The most recent approaches can improve diagnostic precision when examining patients using non-invasive means. This work introduces a brain tumour detection method. The model grows using ResNet50, feature extraction, and augmentation. CNN's pre-trained datasets are used to fine-tune transfer learning. The proposed design utilised elements of the ResNet50 model, removing the final layer and adding four additional layers to meet work conditions. This study uses the improved ResNet50 model to present a novel deep-learning approach based on a transfer learning technique for evaluating brain cancer categorisation accuracy. Performance metrics were used to evaluate the effectiveness of the proposed model, and the results were compared to those obtained using state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
66完成签到 ,获得积分10
刚刚
刚刚
特西之魂完成签到 ,获得积分10
刚刚
1秒前
1秒前
李朝朝发布了新的文献求助10
1秒前
1秒前
嗨嗨害完成签到,获得积分20
2秒前
dzjin发布了新的文献求助10
2秒前
3秒前
嫣儿完成签到,获得积分10
4秒前
噜噜噜发布了新的文献求助10
4秒前
不要加糖发布了新的文献求助10
4秒前
4秒前
大个应助雷寒云采纳,获得10
5秒前
albertxin发布了新的文献求助10
5秒前
特西之魂关注了科研通微信公众号
5秒前
852应助djbj2022采纳,获得10
6秒前
6秒前
Xieyusen发布了新的文献求助20
8秒前
Y0Y0完成签到 ,获得积分10
8秒前
9秒前
9秒前
如意2023发布了新的文献求助10
9秒前
酷波er应助在我梦里绕采纳,获得10
10秒前
Youatpome发布了新的文献求助10
10秒前
11秒前
11秒前
11秒前
马甲完成签到,获得积分10
12秒前
12秒前
peiter发布了新的文献求助10
12秒前
小黄发布了新的文献求助10
14秒前
f0rest发布了新的文献求助10
15秒前
15秒前
Ilan发布了新的文献求助10
16秒前
枫七完成签到,获得积分10
16秒前
dd发布了新的文献求助10
16秒前
pharma发布了新的文献求助10
18秒前
酷波er应助不要加糖采纳,获得10
19秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3967699
求助须知:如何正确求助?哪些是违规求助? 3512860
关于积分的说明 11165281
捐赠科研通 3247897
什么是DOI,文献DOI怎么找? 1794067
邀请新用户注册赠送积分活动 874808
科研通“疑难数据库(出版商)”最低求助积分说明 804550