亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Brain tumor classification using the modified ResNet50 model based on transfer learning

计算机科学 人工智能 学习迁移 深度学习 清晰 机器学习 分割 生物化学 化学
作者
Arpit Kumar Sharma,Amita Nandal,Arvind Dhaka,Liang Zhou,Adi Alhudhaif,Fayadh Alenezi,Kemal Polat
出处
期刊:Biomedical Signal Processing and Control [Elsevier BV]
卷期号:86: 105299-105299 被引量:39
标识
DOI:10.1016/j.bspc.2023.105299
摘要

Brain tumour classification is essential for determining the type and grade and deciding on therapy appropriately. Several diagnostic methods are used in the therapeutic therapy to identify brain tumours. MRI, on the other hand, offers superior picture clarity, which is why specialists depend on it. Furthermore, detecting cancer through the manual division of brain tumours is a time-consuming, exhausting, and difficult job. The hand-designed outlines for planned brain tumour growth methods are present in the majority of the instances. Segmentation is a highly reliable and precise method for assessing therapy prognosis, planning, and outcomes. Artificial Intelligence (AI), Machine Learning (ML), and Deep Learning (DL) advancements have enabled us to investigate the illness with high precision in a short period of time. Such technologies have produced some remarkable results, particularly in the last twenty years. Such breakthroughs provide doctors with the ability to evaluate the human anatomy using high-resolution sections. The most recent approaches can improve diagnostic precision when examining patients using non-invasive means. This work introduces a brain tumour detection method. The model grows using ResNet50, feature extraction, and augmentation. CNN's pre-trained datasets are used to fine-tune transfer learning. The proposed design utilised elements of the ResNet50 model, removing the final layer and adding four additional layers to meet work conditions. This study uses the improved ResNet50 model to present a novel deep-learning approach based on a transfer learning technique for evaluating brain cancer categorisation accuracy. Performance metrics were used to evaluate the effectiveness of the proposed model, and the results were compared to those obtained using state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
123完成签到 ,获得积分10
刚刚
orixero应助hugeng采纳,获得50
3秒前
科研通AI5应助小秋采纳,获得10
4秒前
赘婿应助人生有味是清欢采纳,获得10
12秒前
14秒前
18秒前
dowhenin发布了新的文献求助10
21秒前
XD发布了新的文献求助10
23秒前
科研通AI5应助xkxkii采纳,获得10
25秒前
27秒前
合一海盗完成签到,获得积分10
27秒前
Victor完成签到,获得积分10
28秒前
科研通AI5应助renxiaoting采纳,获得10
29秒前
orixero应助科研通管家采纳,获得10
30秒前
FERN0826完成签到 ,获得积分10
30秒前
30秒前
小六子完成签到,获得积分10
31秒前
31秒前
42秒前
小枣完成签到 ,获得积分10
44秒前
1989发布了新的文献求助10
44秒前
44秒前
hui发布了新的文献求助10
45秒前
JamesPei应助zy_asd采纳,获得10
46秒前
温暖的鸿完成签到 ,获得积分10
47秒前
50秒前
renxiaoting发布了新的文献求助10
51秒前
上官若男应助dowhenin采纳,获得10
51秒前
hugeng发布了新的文献求助50
57秒前
姆姆没买完成签到 ,获得积分10
1分钟前
fanny完成签到 ,获得积分10
1分钟前
zmx完成签到 ,获得积分10
1分钟前
1分钟前
小秋发布了新的文献求助10
1分钟前
lemonade完成签到,获得积分10
1分钟前
channy完成签到,获得积分10
1分钟前
12345完成签到 ,获得积分10
1分钟前
1分钟前
小秋完成签到,获得积分10
1分钟前
1989完成签到,获得积分10
1分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 1000
CRC Handbook of Chemistry and Physics 104th edition 1000
Izeltabart tapatansine - AdisInsight 600
Maneuvering of a Damaged Navy Combatant 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3770354
求助须知:如何正确求助?哪些是违规求助? 3315432
关于积分的说明 10176102
捐赠科研通 3030411
什么是DOI,文献DOI怎么找? 1662898
邀请新用户注册赠送积分活动 795217
科研通“疑难数据库(出版商)”最低求助积分说明 756612