亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Running ahead of evolution—AI-based simulation for predicting future high-risk SARS-CoV-2 variants

可扩展性 严重急性呼吸综合征冠状病毒2型(SARS-CoV-2) 计算机科学 工作流程 突变 2019年冠状病毒病(COVID-19) 计算生物学 构造(python库) 2019-20冠状病毒爆发 大流行 加速 人工智能 生物 遗传学 基因 病毒学 医学 并行计算 数据库 疾病 病理 爆发 传染病(医学专业) 程序设计语言
作者
Jie Chen,Zhiwei Nie,Yu Wang,Kai Wang,Fan Xu,Zhiheng Hu,Bing Zheng,Zhennan Wang,Guoli Song,Jingyi Zhang,Jie Fu,Xiansong Huang,Zhongqi Wang,Zhixiang Ren,Qiankun Wang,Daixi Li,Dong‐Qing Wei,Bin Zhou,Chao Yang,Yonghong Tian
出处
期刊:International Journal of High Performance Computing Applications [SAGE Publishing]
卷期号:37 (6): 650-665 被引量:4
标识
DOI:10.1177/10943420231188077
摘要

The never-ending emergence of SARS-CoV-2 variations of concern (VOCs) has challenged the whole world for pandemic control. In order to develop effective drugs and vaccines, one needs to efficiently simulate SARS-CoV-2 spike receptor-binding domain (RBD) mutations and identify high-risk variants. We pretrain a large protein language model with approximately 408 million protein sequences and construct a high-throughput screening for the prediction of binding affinity and antibody escape. As the first work on SARS-CoV-2 RBD mutation simulation, we successfully identify mutations in the RBD regions of 5 VOCs and can screen millions of potential variants in seconds. Our workflow scales to 4096 NPUs with 96.5% scalability and 493.9× speedup in mixed-precision computing, while achieving a peak performance of 366.8 PFLOPS (reaching 34.9% theoretical peak) on Pengcheng Cloudbrain-II. Our method paves the way for simulating coronavirus evolution in order to prepare for a future pandemic that will inevitably take place. Our models are released at https://github.com/ZhiweiNiepku/SARS-CoV-2_mutation_simulation to facilitate future related work.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
火星上的雨柏完成签到 ,获得积分10
12秒前
科研通AI5应助科研通管家采纳,获得10
56秒前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
3655001Liu发布了新的文献求助30
1分钟前
2分钟前
清脆冥幽发布了新的文献求助10
2分钟前
小二郎应助任性凤凰采纳,获得10
2分钟前
HYQ完成签到 ,获得积分10
2分钟前
清脆冥幽完成签到,获得积分10
2分钟前
2分钟前
任性凤凰发布了新的文献求助10
2分钟前
KINGAZX完成签到 ,获得积分10
3分钟前
善学以致用应助平凡之路采纳,获得10
3分钟前
3分钟前
平凡之路发布了新的文献求助10
3分钟前
伊笙完成签到 ,获得积分0
3分钟前
丘比特应助任性凤凰采纳,获得30
3分钟前
3分钟前
任性凤凰发布了新的文献求助30
3分钟前
gincle完成签到 ,获得积分10
4分钟前
5分钟前
guojia发布了新的文献求助10
5分钟前
NexusExplorer应助任性沛槐采纳,获得10
5分钟前
5分钟前
任性沛槐发布了新的文献求助10
5分钟前
guojia完成签到,获得积分10
5分钟前
九月亦星完成签到 ,获得积分10
5分钟前
紫色天蓝完成签到,获得积分10
6分钟前
6分钟前
紫色天蓝发布了新的文献求助10
6分钟前
饼饼完成签到 ,获得积分10
6分钟前
arniu2008完成签到,获得积分20
6分钟前
arniu2008发布了新的文献求助10
7分钟前
8分钟前
老石完成签到 ,获得积分10
8分钟前
Bamboooo发布了新的文献求助10
8分钟前
斯文败类应助Bamboooo采纳,获得10
8分钟前
五四三二一完成签到 ,获得积分10
8分钟前
JoeyJin完成签到,获得积分10
8分钟前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Handbook of Social and Emotional Learning 800
Risankizumab Versus Ustekinumab For Patients with Moderate to Severe Crohn's Disease: Results from the Phase 3B SEQUENCE Study 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5137746
求助须知:如何正确求助?哪些是违规求助? 4337405
关于积分的说明 13511521
捐赠科研通 4176135
什么是DOI,文献DOI怎么找? 2289874
邀请新用户注册赠送积分活动 1290391
关于科研通互助平台的介绍 1232225