MHorUNet: High-order spatial interaction UNet for skin lesion segmentation

计算机科学 分割 卷积(计算机科学) 人工智能 模式识别(心理学) 人工神经网络
作者
Renkai Wu,Pengchen Liang,Xuan Huang,Liu Shi,Yuandong Gu,Haiqin Zhu,Qing Chang
出处
期刊:Biomedical Signal Processing and Control [Elsevier]
卷期号:88: 105517-105517 被引量:48
标识
DOI:10.1016/j.bspc.2023.105517
摘要

In recent years, dermoscopy, as a noninvasive means of detection, has been increasingly used in the auxiliary diagnosis of skin disease, especially for skin cancer, such as malignant melanoma. And the automatic segment is a key step to improve accuracy of diagnosis. Generally, UNet models and its alternative schemes have occupied the vast majority of segmentation tasks in medical image processing. However, many of the current models are not perfect, the ordinary convolution in the UNet model cannot exhibit spatial dependence and remote interaction, while the use of Transformers as a convolution alternative is gradually becoming mainstream, but there are problems such as large data volume requirements as well as high computational effort in dealing with medical clinical problems. Therefore, we propose a HorUNet model with higher-order spatial interaction based on recursive gate convolution, and add a multi-stage dimensional fusion mechanism to the skip connection part to form the MHorUNet model architecture. The higher-order interaction mechanism with recursive gate convolution not only has the key factors for the success of Transformers, but also retains the excellent characteristics of convolution itself. We first performed comparative experiments by performing in two typical public skin lesion datasets (ISIC2017 and ISIC2018) and then used the PH2 dataset and our own dataset as external validation. The experimental results show that our method performs best in several metrics. This confirms that our model has a better generalization capability in terms of medically accurate segmentation results with high segmentation accuracy. The code can be obtained from https://github.com/wurenkai/MHorUNet.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
LUCKYLI_QIAN完成签到 ,获得积分10
1秒前
风趣的白山完成签到 ,获得积分10
1秒前
2秒前
2秒前
我是老大应助亚亚吖采纳,获得10
3秒前
3秒前
3秒前
4秒前
L1驳回了情怀应助
5秒前
6秒前
6秒前
NexusExplorer应助weddcf采纳,获得10
7秒前
快乐小羊发布了新的文献求助10
7秒前
科研通AI6应助Gaoge采纳,获得10
7秒前
上官若男应助清风采纳,获得10
7秒前
Orange应助呦呦采纳,获得10
8秒前
8秒前
浮游应助zgnh采纳,获得10
8秒前
CMUSK发布了新的文献求助10
9秒前
量子星尘发布了新的文献求助10
9秒前
一蓑烟雨任平生完成签到,获得积分10
10秒前
跳跃蓝完成签到 ,获得积分10
10秒前
11秒前
12秒前
liyuchen完成签到,获得积分10
12秒前
12秒前
13秒前
13秒前
鲤鱼依白完成签到 ,获得积分10
13秒前
MGzsss完成签到,获得积分10
13秒前
15秒前
雪雪儿完成签到,获得积分10
15秒前
跳跳熊发布了新的文献求助30
15秒前
16秒前
16秒前
阿宅完成签到,获得积分10
16秒前
16秒前
赵yy应助jia采纳,获得10
17秒前
18秒前
某某发布了新的文献求助10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Item Response Theory 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 921
Identifying dimensions of interest to support learning in disengaged students: the MINE project 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5429137
求助须知:如何正确求助?哪些是违规求助? 4542668
关于积分的说明 14181964
捐赠科研通 4460422
什么是DOI,文献DOI怎么找? 2445722
邀请新用户注册赠送积分活动 1436910
关于科研通互助平台的介绍 1414107