MHorUNet: High-order spatial interaction UNet for skin lesion segmentation

计算机科学 分割 卷积(计算机科学) 人工智能 模式识别(心理学) 人工神经网络
作者
Renkai Wu,Pengchen Liang,Xuan Huang,Liu Shi,Yuandong Gu,Haiqin Zhu,Qing Chang
出处
期刊:Biomedical Signal Processing and Control [Elsevier]
卷期号:88: 105517-105517 被引量:7
标识
DOI:10.1016/j.bspc.2023.105517
摘要

In recent years, dermoscopy, as a noninvasive means of detection, has been increasingly used in the auxiliary diagnosis of skin disease, especially for skin cancer, such as malignant melanoma. And the automatic segment is a key step to improve accuracy of diagnosis. Generally, UNet models and its alternative schemes have occupied the vast majority of segmentation tasks in medical image processing. However, many of the current models are not perfect, the ordinary convolution in the UNet model cannot exhibit spatial dependence and remote interaction, while the use of Transformers as a convolution alternative is gradually becoming mainstream, but there are problems such as large data volume requirements as well as high computational effort in dealing with medical clinical problems. Therefore, we propose a HorUNet model with higher-order spatial interaction based on recursive gate convolution, and add a multi-stage dimensional fusion mechanism to the skip connection part to form the MHorUNet model architecture. The higher-order interaction mechanism with recursive gate convolution not only has the key factors for the success of Transformers, but also retains the excellent characteristics of convolution itself. We first performed comparative experiments by performing in two typical public skin lesion datasets (ISIC2017 and ISIC2018) and then used the PH2 dataset and our own dataset as external validation. The experimental results show that our method performs best in several metrics. This confirms that our model has a better generalization capability in terms of medically accurate segmentation results with high segmentation accuracy. The code can be obtained from https://github.com/wurenkai/MHorUNet.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ardejiang发布了新的文献求助10
1秒前
1秒前
高贵芷波发布了新的文献求助10
1秒前
LLLLL发布了新的文献求助10
1秒前
乐乐应助帅气的Q采纳,获得10
2秒前
李星星发布了新的文献求助10
2秒前
缓慢珠发布了新的文献求助10
3秒前
4秒前
Orange应助叶液采纳,获得10
4秒前
4秒前
星星发布了新的文献求助10
4秒前
4秒前
研友_VZG7GZ应助YXYWZMSZ采纳,获得10
5秒前
ebbinghuazhu发布了新的文献求助10
5秒前
5秒前
DASHU发布了新的文献求助30
6秒前
6秒前
可可萝oxo发布了新的文献求助10
7秒前
8秒前
quan完成签到,获得积分10
8秒前
淡定沛珊发布了新的文献求助10
8秒前
tiantian完成签到,获得积分10
8秒前
虚心岂愈发布了新的文献求助10
10秒前
大胆隶完成签到,获得积分10
11秒前
11秒前
雪ノ下詩乃完成签到,获得积分10
11秒前
深情安青应助Chine-Wang采纳,获得10
11秒前
12秒前
13秒前
桐桐应助缓慢珠采纳,获得10
13秒前
852应助YXYWZMSZ采纳,获得10
13秒前
皎皎完成签到,获得积分10
14秒前
脑洞疼应助小付采纳,获得10
14秒前
14秒前
贪玩海之完成签到,获得积分10
15秒前
赘婿应助科研通管家采纳,获得10
15秒前
Isla完成签到,获得积分10
15秒前
领导范儿应助科研通管家采纳,获得10
15秒前
15秒前
大模型应助科研通管家采纳,获得10
15秒前
高分求助中
Lire en communiste 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
中国氢能技术发展路线图研究 500
Communist propaganda: a fact book, 1957-1958 500
Briefe aus Shanghai 1946‒1952 (Dokumente eines Kulturschocks) 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3168966
求助须知:如何正确求助?哪些是违规求助? 2820245
关于积分的说明 7929811
捐赠科研通 2480332
什么是DOI,文献DOI怎么找? 1321320
科研通“疑难数据库(出版商)”最低求助积分说明 633191
版权声明 602497