已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

MHorUNet: High-order spatial interaction UNet for skin lesion segmentation

计算机科学 分割 卷积(计算机科学) 人工智能 模式识别(心理学) 人工神经网络
作者
Renkai Wu,Pengchen Liang,Xuan Huang,Liu Shi,Yuandong Gu,Haiqin Zhu,Qing Chang
出处
期刊:Biomedical Signal Processing and Control [Elsevier]
卷期号:88: 105517-105517 被引量:3
标识
DOI:10.1016/j.bspc.2023.105517
摘要

In recent years, dermoscopy, as a noninvasive means of detection, has been increasingly used in the auxiliary diagnosis of skin disease, especially for skin cancer, such as malignant melanoma. And the automatic segment is a key step to improve accuracy of diagnosis. Generally, UNet models and its alternative schemes have occupied the vast majority of segmentation tasks in medical image processing. However, many of the current models are not perfect, the ordinary convolution in the UNet model cannot exhibit spatial dependence and remote interaction, while the use of Transformers as a convolution alternative is gradually becoming mainstream, but there are problems such as large data volume requirements as well as high computational effort in dealing with medical clinical problems. Therefore, we propose a HorUNet model with higher-order spatial interaction based on recursive gate convolution, and add a multi-stage dimensional fusion mechanism to the skip connection part to form the MHorUNet model architecture. The higher-order interaction mechanism with recursive gate convolution not only has the key factors for the success of Transformers, but also retains the excellent characteristics of convolution itself. We first performed comparative experiments by performing in two typical public skin lesion datasets (ISIC2017 and ISIC2018) and then used the PH2 dataset and our own dataset as external validation. The experimental results show that our method performs best in several metrics. This confirms that our model has a better generalization capability in terms of medically accurate segmentation results with high segmentation accuracy. The code can be obtained from https://github.com/wurenkai/MHorUNet.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
笑笑完成签到,获得积分10
5秒前
天空城主完成签到,获得积分10
7秒前
8秒前
猪猪hero应助与一人同游采纳,获得10
8秒前
8秒前
所所应助中医红采纳,获得10
9秒前
张秋雨发布了新的文献求助10
11秒前
tu豆发布了新的文献求助20
12秒前
13秒前
147发布了新的文献求助10
14秒前
大模型应助宋锦采纳,获得10
15秒前
17秒前
想人陪的飞薇完成签到 ,获得积分10
19秒前
20秒前
专一的乐枫完成签到,获得积分10
22秒前
a成发布了新的文献求助10
23秒前
支凤妖发布了新的文献求助10
24秒前
知识是芝士完成签到,获得积分20
24秒前
qiu完成签到,获得积分10
25秒前
25秒前
CipherSage应助应夏山采纳,获得10
27秒前
独特凡松发布了新的文献求助10
31秒前
李健应助支凤妖采纳,获得10
32秒前
多喝水少生气完成签到 ,获得积分10
33秒前
所所应助nickel采纳,获得10
38秒前
多喝水少生气关注了科研通微信公众号
39秒前
Kapur完成签到,获得积分10
39秒前
41秒前
cxlcxl完成签到,获得积分10
41秒前
研友_VZG7GZ应助幸运幸福采纳,获得10
43秒前
cxlcxl发布了新的文献求助30
45秒前
桐桐应助高贵季节采纳,获得10
45秒前
Gameven完成签到,获得积分10
46秒前
积极灵寒完成签到 ,获得积分10
47秒前
迷路海蓝发布了新的文献求助10
49秒前
苞大米发布了新的文献求助10
53秒前
54秒前
54秒前
54秒前
高分求助中
Sustainability in Tides Chemistry 2000
The ACS Guide to Scholarly Communication 2000
Studien zur Ideengeschichte der Gesetzgebung 1000
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
Threaded Harmony: A Sustainable Approach to Fashion 810
Pharmacogenomics: Applications to Patient Care, Third Edition 800
Free Will in the Flesh 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3081353
求助须知:如何正确求助?哪些是违规求助? 2734041
关于积分的说明 7531449
捐赠科研通 2383454
什么是DOI,文献DOI怎么找? 1263852
科研通“疑难数据库(出版商)”最低求助积分说明 612420
版权声明 597560