MHorUNet: High-order spatial interaction UNet for skin lesion segmentation

计算机科学 分割 卷积(计算机科学) 人工智能 模式识别(心理学) 人工神经网络
作者
Renkai Wu,Pengchen Liang,Xuan Huang,Liu Shi,Yuandong Gu,Haiqin Zhu,Qing Chang
出处
期刊:Biomedical Signal Processing and Control [Elsevier BV]
卷期号:88: 105517-105517 被引量:30
标识
DOI:10.1016/j.bspc.2023.105517
摘要

In recent years, dermoscopy, as a noninvasive means of detection, has been increasingly used in the auxiliary diagnosis of skin disease, especially for skin cancer, such as malignant melanoma. And the automatic segment is a key step to improve accuracy of diagnosis. Generally, UNet models and its alternative schemes have occupied the vast majority of segmentation tasks in medical image processing. However, many of the current models are not perfect, the ordinary convolution in the UNet model cannot exhibit spatial dependence and remote interaction, while the use of Transformers as a convolution alternative is gradually becoming mainstream, but there are problems such as large data volume requirements as well as high computational effort in dealing with medical clinical problems. Therefore, we propose a HorUNet model with higher-order spatial interaction based on recursive gate convolution, and add a multi-stage dimensional fusion mechanism to the skip connection part to form the MHorUNet model architecture. The higher-order interaction mechanism with recursive gate convolution not only has the key factors for the success of Transformers, but also retains the excellent characteristics of convolution itself. We first performed comparative experiments by performing in two typical public skin lesion datasets (ISIC2017 and ISIC2018) and then used the PH2 dataset and our own dataset as external validation. The experimental results show that our method performs best in several metrics. This confirms that our model has a better generalization capability in terms of medically accurate segmentation results with high segmentation accuracy. The code can be obtained from https://github.com/wurenkai/MHorUNet.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
凉凉应助dtcao采纳,获得10
刚刚
量子星尘发布了新的文献求助10
刚刚
卡卡西发布了新的文献求助10
刚刚
刚刚
长风与海浪完成签到 ,获得积分10
1秒前
MAOJCFK发布了新的文献求助10
2秒前
2秒前
faiting完成签到,获得积分10
2秒前
勤奋的天亦完成签到,获得积分10
2秒前
kiyo_v完成签到,获得积分10
2秒前
邓代容发布了新的文献求助10
3秒前
无私的芹应助yuelsy0117采纳,获得10
3秒前
ZHYChen完成签到,获得积分10
3秒前
huk发布了新的文献求助10
3秒前
ZJJ静完成签到,获得积分10
4秒前
董竹君完成签到,获得积分10
4秒前
俭朴的天曼完成签到,获得积分10
4秒前
Lucas应助顺心的翠丝采纳,获得10
5秒前
李田田完成签到,获得积分20
5秒前
5秒前
义气乐儿发布了新的文献求助10
5秒前
宅心仁厚完成签到 ,获得积分10
6秒前
6秒前
骑猪看日落完成签到,获得积分10
6秒前
冥冥之极为昭昭完成签到,获得积分10
6秒前
繁荣的又夏完成签到,获得积分10
7秒前
7秒前
嗝嗝完成签到,获得积分10
7秒前
8秒前
Windsyang完成签到,获得积分10
8秒前
cs完成签到,获得积分10
9秒前
wanci应助小蜜蜂采纳,获得10
9秒前
拉瓦锡不爱化学完成签到,获得积分10
10秒前
三笠完成签到,获得积分10
11秒前
cmuwinni完成签到,获得积分10
11秒前
爆米花应助ddffgz采纳,获得30
12秒前
在水一方应助YY采纳,获得10
12秒前
实验耗材发布了新的文献求助10
12秒前
孤独听雨的猫完成签到 ,获得积分10
12秒前
Andy.发布了新的文献求助10
12秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
Coking simulation aids on-stream time 450
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4015859
求助须知:如何正确求助?哪些是违规求助? 3555835
关于积分的说明 11318981
捐赠科研通 3288954
什么是DOI,文献DOI怎么找? 1812355
邀请新用户注册赠送积分活动 887882
科研通“疑难数据库(出版商)”最低求助积分说明 812027