MHorUNet: High-order spatial interaction UNet for skin lesion segmentation

计算机科学 分割 卷积(计算机科学) 人工智能 模式识别(心理学) 人工神经网络
作者
Renkai Wu,Pengchen Liang,Xuan Huang,Liu Shi,Yuandong Gu,Haiqin Zhu,Qing Chang
出处
期刊:Biomedical Signal Processing and Control [Elsevier BV]
卷期号:88: 105517-105517 被引量:41
标识
DOI:10.1016/j.bspc.2023.105517
摘要

In recent years, dermoscopy, as a noninvasive means of detection, has been increasingly used in the auxiliary diagnosis of skin disease, especially for skin cancer, such as malignant melanoma. And the automatic segment is a key step to improve accuracy of diagnosis. Generally, UNet models and its alternative schemes have occupied the vast majority of segmentation tasks in medical image processing. However, many of the current models are not perfect, the ordinary convolution in the UNet model cannot exhibit spatial dependence and remote interaction, while the use of Transformers as a convolution alternative is gradually becoming mainstream, but there are problems such as large data volume requirements as well as high computational effort in dealing with medical clinical problems. Therefore, we propose a HorUNet model with higher-order spatial interaction based on recursive gate convolution, and add a multi-stage dimensional fusion mechanism to the skip connection part to form the MHorUNet model architecture. The higher-order interaction mechanism with recursive gate convolution not only has the key factors for the success of Transformers, but also retains the excellent characteristics of convolution itself. We first performed comparative experiments by performing in two typical public skin lesion datasets (ISIC2017 and ISIC2018) and then used the PH2 dataset and our own dataset as external validation. The experimental results show that our method performs best in several metrics. This confirms that our model has a better generalization capability in terms of medically accurate segmentation results with high segmentation accuracy. The code can be obtained from https://github.com/wurenkai/MHorUNet.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
蛇從革完成签到,获得积分0
刚刚
1秒前
小崔发布了新的文献求助10
1秒前
小巧强炫发布了新的文献求助10
1秒前
多喝水发布了新的文献求助10
1秒前
陆千万完成签到,获得积分10
1秒前
1秒前
Dawnnn完成签到,获得积分10
1秒前
2秒前
2秒前
2秒前
yyyyds发布了新的文献求助10
3秒前
情怀应助无聊的面包采纳,获得10
3秒前
3秒前
4秒前
科研通AI5应助123采纳,获得10
4秒前
4秒前
小蘑菇应助felix采纳,获得10
4秒前
orixero应助贺呵呵采纳,获得10
4秒前
科研通AI5应助zz采纳,获得30
5秒前
桃花长平发布了新的文献求助10
5秒前
myf完成签到,获得积分10
5秒前
5秒前
量子星尘发布了新的文献求助10
6秒前
ZHB发布了新的文献求助30
6秒前
6秒前
HCN发布了新的文献求助10
6秒前
优雅的棉花糖完成签到,获得积分10
7秒前
justsoso完成签到,获得积分10
7秒前
yyyyds完成签到,获得积分10
8秒前
8秒前
8秒前
大模型应助lkn666采纳,获得10
8秒前
9秒前
9秒前
Suniex完成签到,获得积分10
10秒前
析木发布了新的文献求助10
10秒前
11秒前
heady完成签到,获得积分10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4599730
求助须知:如何正确求助?哪些是违规求助? 4010192
关于积分的说明 12415278
捐赠科研通 3689855
什么是DOI,文献DOI怎么找? 2034068
邀请新用户注册赠送积分活动 1067344
科研通“疑难数据库(出版商)”最低求助积分说明 952301