Joint data-driven and physics-driven prestack amplitude-variation-with-angle elastic parameter inversion

叠前 反演(地质) 振幅 振幅与偏移 算法 合成数据 偏移量(计算机科学) 地震反演 人工神经网络 计算机科学 地质学 地震学 物理 光学 人工智能 方位角 构造学 程序设计语言
作者
Shuliang Wu,Yingying Wang,Qingping Li,Zhiliang He,Jianhua Geng
出处
期刊:Geophysics [Society of Exploration Geophysicists]
卷期号:89 (1): R17-R32
标识
DOI:10.1190/geo2023-0135.1
摘要

Elastic parameters such as P-wave and S-wave velocity and density are of great significance for subsurface quantitative interpretation and reservoir prediction. Current prestack amplitude-variation-with-angle (AVA) inversion methods have been widely used in the industry to obtain subsurface elastic parameters. Conventional AVA inversion methods are theoretically based on a linearized amplitude-variation-with-offset model that formulates the relationship between prestack seismic reflection coefficients and the subsurface model of elastic parameters, which is called physical model-driven inversion. However, due to the linearized physical model, it is difficult to obtain high-accuracy and high-resolution inversion results using model-driven inversion when the incident angles are greater than 30°. In recent years, several neural network-based prestack AVA inversion methods, known as data-driven inversion, have been developed to address this issue. However, these methods typically require a large amount of labeled data for training networks, and there is no physical mechanism in the network training process. To solve this problem, a joint data-driven and physics-driven inversion of prestack AVA elastic parameters is proposed. Under the framework of semisupervised learning, a 2D convolutional neural network and a recurrent neural network are used to establish the mapping between several adjacent prestack AVA gathers and 1D elastic parameters in the time domain. The full Zoeppritz equation suitable for large incidence angles is used as a physical constraint for training the neural network. The loss functions of the network are constructed by combing well-log data and prestack AVA seismic data. This approach enables us to use fewer labeled data for training the network and increases the physical interpretability of the training process. To further improve the inversion results, the inverse distance weighted correlation coefficient of seismic data is applied to the loss function of seismic data and well-log data. Synthetic and field data examples demonstrate that the joint data-driven and physics-driven prestack AVA elastic parameter inversion improves accuracy and resolution compared with conventional model-driven inversion.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
dove发布了新的文献求助10
3秒前
田様应助wwz采纳,获得20
4秒前
5秒前
紫麒麟完成签到,获得积分10
6秒前
6秒前
溜溜莓完成签到,获得积分10
8秒前
9秒前
世界尽头完成签到,获得积分10
9秒前
11秒前
华仔应助Summer采纳,获得10
11秒前
orixero应助神勇秋白采纳,获得10
11秒前
莉莉发布了新的文献求助10
12秒前
13秒前
开朗筮发布了新的文献求助10
14秒前
海绵宝宝完成签到,获得积分10
19秒前
开朗筮完成签到,获得积分10
21秒前
21秒前
21秒前
1111茗完成签到 ,获得积分20
24秒前
25秒前
锤子简历关注了科研通微信公众号
25秒前
iuu完成签到,获得积分10
25秒前
空写乐发布了新的文献求助10
25秒前
Vivian发布了新的文献求助10
26秒前
28秒前
32秒前
32秒前
35秒前
惊执虫儿发布了新的文献求助10
36秒前
灵珠学医完成签到 ,获得积分10
36秒前
锤子简历发布了新的文献求助10
38秒前
38秒前
39秒前
40秒前
40秒前
TTLL关注了科研通微信公众号
40秒前
风轻完成签到,获得积分10
41秒前
安静店员发布了新的文献求助10
42秒前
42秒前
42秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
Refractory Castable Engineering 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5206874
求助须知:如何正确求助?哪些是违规求助? 4385090
关于积分的说明 13655640
捐赠科研通 4243471
什么是DOI,文献DOI怎么找? 2328142
邀请新用户注册赠送积分活动 1325869
关于科研通互助平台的介绍 1277979