Joint data-driven and physics-driven prestack amplitude-variation-with-angle elastic parameter inversion

叠前 反演(地质) 振幅 振幅与偏移 算法 合成数据 偏移量(计算机科学) 地震反演 人工神经网络 计算机科学 地质学 地震学 物理 光学 人工智能 方位角 构造学 程序设计语言
作者
Shuliang Wu,Yingying Wang,Qingping Li,Zhiliang He,Jianhua Geng
出处
期刊:Geophysics [Society of Exploration Geophysicists]
卷期号:89 (1): R17-R32
标识
DOI:10.1190/geo2023-0135.1
摘要

Elastic parameters such as P-wave and S-wave velocity and density are of great significance for subsurface quantitative interpretation and reservoir prediction. Current prestack amplitude-variation-with-angle (AVA) inversion methods have been widely used in the industry to obtain subsurface elastic parameters. Conventional AVA inversion methods are theoretically based on a linearized amplitude-variation-with-offset model that formulates the relationship between prestack seismic reflection coefficients and the subsurface model of elastic parameters, which is called physical model-driven inversion. However, due to the linearized physical model, it is difficult to obtain high-accuracy and high-resolution inversion results using model-driven inversion when the incident angles are greater than 30°. In recent years, several neural network-based prestack AVA inversion methods, known as data-driven inversion, have been developed to address this issue. However, these methods typically require a large amount of labeled data for training networks, and there is no physical mechanism in the network training process. To solve this problem, a joint data-driven and physics-driven inversion of prestack AVA elastic parameters is proposed. Under the framework of semisupervised learning, a 2D convolutional neural network and a recurrent neural network are used to establish the mapping between several adjacent prestack AVA gathers and 1D elastic parameters in the time domain. The full Zoeppritz equation suitable for large incidence angles is used as a physical constraint for training the neural network. The loss functions of the network are constructed by combing well-log data and prestack AVA seismic data. This approach enables us to use fewer labeled data for training the network and increases the physical interpretability of the training process. To further improve the inversion results, the inverse distance weighted correlation coefficient of seismic data is applied to the loss function of seismic data and well-log data. Synthetic and field data examples demonstrate that the joint data-driven and physics-driven prestack AVA elastic parameter inversion improves accuracy and resolution compared with conventional model-driven inversion.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
完美亦云完成签到,获得积分10
刚刚
科研通AI2S应助危机的乐双采纳,获得10
2秒前
5秒前
aprilvanilla应助吉他配三弦采纳,获得10
6秒前
怕孤单的思雁完成签到,获得积分10
6秒前
9秒前
风趣凝荷发布了新的文献求助10
9秒前
9秒前
10秒前
学术小白完成签到,获得积分10
14秒前
14秒前
深情安青应助开放沛柔采纳,获得10
14秒前
15秒前
carol_li完成签到,获得积分10
16秒前
17秒前
斯文败类应助mirrovo采纳,获得10
18秒前
MajorTom发布了新的文献求助10
19秒前
科研通AI2S应助m彬m彬采纳,获得10
21秒前
21秒前
抽屉里的砖头完成签到,获得积分10
22秒前
24秒前
hata发布了新的文献求助10
27秒前
28秒前
hhh完成签到,获得积分10
28秒前
会吹泡泡发布了新的文献求助10
31秒前
zack发布了新的文献求助10
31秒前
33秒前
Owen应助理想要有光采纳,获得30
36秒前
38秒前
39秒前
39秒前
39秒前
山猫发布了新的文献求助10
41秒前
42秒前
bingbing发布了新的文献求助10
42秒前
风趣凝荷发布了新的文献求助10
42秒前
乐乐应助陈M雯采纳,获得10
42秒前
42秒前
zack完成签到,获得积分10
42秒前
m彬m彬发布了新的文献求助10
44秒前
高分求助中
Lire en communiste 1000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 700
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
中国百部新生物碱的化学研究 500
Evolution 3rd edition 500
Die Gottesanbeterin: Mantis religiosa: 656 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3178289
求助须知:如何正确求助?哪些是违规求助? 2829290
关于积分的说明 7970717
捐赠科研通 2490669
什么是DOI,文献DOI怎么找? 1327728
科研通“疑难数据库(出版商)”最低求助积分说明 635338
版权声明 602904