亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Joint data-driven and physics-driven prestack amplitude-variation-with-angle elastic parameter inversion

叠前 反演(地质) 振幅 振幅与偏移 算法 合成数据 偏移量(计算机科学) 地震反演 人工神经网络 计算机科学 地质学 地震学 物理 光学 人工智能 方位角 构造学 程序设计语言
作者
Shuliang Wu,Yingying Wang,Qingping Li,Zhiliang He,Jianhua Geng
出处
期刊:Geophysics [Society of Exploration Geophysicists]
卷期号:89 (1): R17-R32
标识
DOI:10.1190/geo2023-0135.1
摘要

Elastic parameters such as P-wave and S-wave velocity and density are of great significance for subsurface quantitative interpretation and reservoir prediction. Current prestack amplitude-variation-with-angle (AVA) inversion methods have been widely used in the industry to obtain subsurface elastic parameters. Conventional AVA inversion methods are theoretically based on a linearized amplitude-variation-with-offset model that formulates the relationship between prestack seismic reflection coefficients and the subsurface model of elastic parameters, which is called physical model-driven inversion. However, due to the linearized physical model, it is difficult to obtain high-accuracy and high-resolution inversion results using model-driven inversion when the incident angles are greater than 30°. In recent years, several neural network-based prestack AVA inversion methods, known as data-driven inversion, have been developed to address this issue. However, these methods typically require a large amount of labeled data for training networks, and there is no physical mechanism in the network training process. To solve this problem, a joint data-driven and physics-driven inversion of prestack AVA elastic parameters is proposed. Under the framework of semisupervised learning, a 2D convolutional neural network and a recurrent neural network are used to establish the mapping between several adjacent prestack AVA gathers and 1D elastic parameters in the time domain. The full Zoeppritz equation suitable for large incidence angles is used as a physical constraint for training the neural network. The loss functions of the network are constructed by combing well-log data and prestack AVA seismic data. This approach enables us to use fewer labeled data for training the network and increases the physical interpretability of the training process. To further improve the inversion results, the inverse distance weighted correlation coefficient of seismic data is applied to the loss function of seismic data and well-log data. Synthetic and field data examples demonstrate that the joint data-driven and physics-driven prestack AVA elastic parameter inversion improves accuracy and resolution compared with conventional model-driven inversion.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
9秒前
杰老爷完成签到,获得积分10
15秒前
传奇3应助科研通管家采纳,获得10
16秒前
Criminology34应助科研通管家采纳,获得10
16秒前
Criminology34应助科研通管家采纳,获得10
16秒前
Criminology34应助科研通管家采纳,获得10
16秒前
orixero应助那那采纳,获得10
31秒前
shiny完成签到 ,获得积分10
31秒前
HOAN应助辛勤夜柳采纳,获得30
35秒前
36秒前
43秒前
47秒前
辛勤夜柳完成签到,获得积分10
48秒前
杰老爷发布了新的文献求助10
59秒前
117发布了新的文献求助10
1分钟前
xky200125完成签到 ,获得积分10
1分钟前
我是老大应助wq采纳,获得10
1分钟前
1分钟前
cling发布了新的文献求助10
1分钟前
1分钟前
多乐多发布了新的文献求助10
1分钟前
1分钟前
Haim4完成签到,获得积分20
1分钟前
量子星尘发布了新的文献求助10
1分钟前
2分钟前
小二郎应助科研通管家采纳,获得10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
Ava应助科研通管家采纳,获得10
2分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
2分钟前
3分钟前
美满尔蓝完成签到,获得积分10
3分钟前
木棉发布了新的文献求助10
3分钟前
3分钟前
无极微光应助刘言采纳,获得20
3分钟前
凡尔赛老痘完成签到,获得积分10
3分钟前
guoguo82完成签到,获得积分10
3分钟前
3分钟前
开放道天发布了新的文献求助10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5664293
求助须知:如何正确求助?哪些是违规求助? 4860543
关于积分的说明 15107502
捐赠科研通 4822814
什么是DOI,文献DOI怎么找? 2581760
邀请新用户注册赠送积分活动 1535979
关于科研通互助平台的介绍 1494205