重要提醒:2025.12.15 12:00-12:50期间发布的求助,下载出现了问题,现在已经修复完毕,请重新下载即可。如非文件错误,请不要进行驳回。

Joint data-driven and physics-driven prestack amplitude-variation-with-angle elastic parameter inversion

叠前 反演(地质) 振幅 振幅与偏移 算法 合成数据 偏移量(计算机科学) 地震反演 人工神经网络 计算机科学 地质学 地震学 物理 光学 人工智能 方位角 构造学 程序设计语言
作者
Shuliang Wu,Yingying Wang,Qingping Li,Zhiliang He,Jianhua Geng
出处
期刊:Geophysics [Society of Exploration Geophysicists]
卷期号:89 (1): R17-R32
标识
DOI:10.1190/geo2023-0135.1
摘要

Elastic parameters such as P-wave and S-wave velocity and density are of great significance for subsurface quantitative interpretation and reservoir prediction. Current prestack amplitude-variation-with-angle (AVA) inversion methods have been widely used in the industry to obtain subsurface elastic parameters. Conventional AVA inversion methods are theoretically based on a linearized amplitude-variation-with-offset model that formulates the relationship between prestack seismic reflection coefficients and the subsurface model of elastic parameters, which is called physical model-driven inversion. However, due to the linearized physical model, it is difficult to obtain high-accuracy and high-resolution inversion results using model-driven inversion when the incident angles are greater than 30°. In recent years, several neural network-based prestack AVA inversion methods, known as data-driven inversion, have been developed to address this issue. However, these methods typically require a large amount of labeled data for training networks, and there is no physical mechanism in the network training process. To solve this problem, a joint data-driven and physics-driven inversion of prestack AVA elastic parameters is proposed. Under the framework of semisupervised learning, a 2D convolutional neural network and a recurrent neural network are used to establish the mapping between several adjacent prestack AVA gathers and 1D elastic parameters in the time domain. The full Zoeppritz equation suitable for large incidence angles is used as a physical constraint for training the neural network. The loss functions of the network are constructed by combing well-log data and prestack AVA seismic data. This approach enables us to use fewer labeled data for training the network and increases the physical interpretability of the training process. To further improve the inversion results, the inverse distance weighted correlation coefficient of seismic data is applied to the loss function of seismic data and well-log data. Synthetic and field data examples demonstrate that the joint data-driven and physics-driven prestack AVA elastic parameter inversion improves accuracy and resolution compared with conventional model-driven inversion.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
liu完成签到,获得积分10
刚刚
刚刚
1秒前
1秒前
zzmole完成签到,获得积分10
2秒前
2秒前
量子星尘发布了新的文献求助10
2秒前
qing发布了新的文献求助10
3秒前
3秒前
hilm应助愉快的丹彤采纳,获得30
3秒前
bkagyin应助junjun采纳,获得10
3秒前
英俊的铭应助山谷采纳,获得50
3秒前
阿亮86完成签到,获得积分10
4秒前
4秒前
wloe应助森活鱼块采纳,获得10
4秒前
5秒前
6秒前
6秒前
111发布了新的文献求助10
6秒前
深情安青应助zzmole采纳,获得10
7秒前
123完成签到,获得积分20
7秒前
大道发布了新的文献求助10
8秒前
zxh完成签到,获得积分10
8秒前
8秒前
合适秋烟完成签到,获得积分10
9秒前
自信的傲晴完成签到,获得积分10
9秒前
10秒前
aaa北大街完成签到,获得积分10
10秒前
10秒前
11秒前
Akim应助小小青椒采纳,获得10
11秒前
11秒前
我是老大应助裴浩男采纳,获得10
11秒前
nmt发布了新的文献求助10
11秒前
JamesPei应助yu采纳,获得10
11秒前
11秒前
文子大王完成签到,获得积分10
12秒前
thchiang完成签到 ,获得积分10
12秒前
一小位同学完成签到,获得积分10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
Unraveling the Causalities of Genetic Variations - Recent Advances in Cytogenetics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5466072
求助须知:如何正确求助?哪些是违规求助? 4570135
关于积分的说明 14322892
捐赠科研通 4496608
什么是DOI,文献DOI怎么找? 2463448
邀请新用户注册赠送积分活动 1452319
关于科研通互助平台的介绍 1427516