Joint data-driven and physics-driven prestack amplitude-variation-with-angle elastic parameter inversion

叠前 反演(地质) 振幅 振幅与偏移 算法 合成数据 偏移量(计算机科学) 地震反演 人工神经网络 计算机科学 地质学 地震学 物理 光学 人工智能 方位角 构造学 程序设计语言
作者
Shuliang Wu,Yingying Wang,Qingping Li,Zhiliang He,Jianhua Geng
出处
期刊:Geophysics [Society of Exploration Geophysicists]
卷期号:89 (1): R17-R32
标识
DOI:10.1190/geo2023-0135.1
摘要

Elastic parameters such as P-wave and S-wave velocity and density are of great significance for subsurface quantitative interpretation and reservoir prediction. Current prestack amplitude-variation-with-angle (AVA) inversion methods have been widely used in the industry to obtain subsurface elastic parameters. Conventional AVA inversion methods are theoretically based on a linearized amplitude-variation-with-offset model that formulates the relationship between prestack seismic reflection coefficients and the subsurface model of elastic parameters, which is called physical model-driven inversion. However, due to the linearized physical model, it is difficult to obtain high-accuracy and high-resolution inversion results using model-driven inversion when the incident angles are greater than 30°. In recent years, several neural network-based prestack AVA inversion methods, known as data-driven inversion, have been developed to address this issue. However, these methods typically require a large amount of labeled data for training networks, and there is no physical mechanism in the network training process. To solve this problem, a joint data-driven and physics-driven inversion of prestack AVA elastic parameters is proposed. Under the framework of semisupervised learning, a 2D convolutional neural network and a recurrent neural network are used to establish the mapping between several adjacent prestack AVA gathers and 1D elastic parameters in the time domain. The full Zoeppritz equation suitable for large incidence angles is used as a physical constraint for training the neural network. The loss functions of the network are constructed by combing well-log data and prestack AVA seismic data. This approach enables us to use fewer labeled data for training the network and increases the physical interpretability of the training process. To further improve the inversion results, the inverse distance weighted correlation coefficient of seismic data is applied to the loss function of seismic data and well-log data. Synthetic and field data examples demonstrate that the joint data-driven and physics-driven prestack AVA elastic parameter inversion improves accuracy and resolution compared with conventional model-driven inversion.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助Emma采纳,获得10
刚刚
香蕉觅云应助珺儿采纳,获得10
1秒前
TR发布了新的文献求助10
1秒前
tao驳回了wanci应助
2秒前
swsssn发布了新的文献求助10
2秒前
阿鹏完成签到,获得积分10
2秒前
李爱国应助ALIEN采纳,获得10
3秒前
不知道完成签到,获得积分10
3秒前
Dasiliy完成签到,获得积分10
5秒前
5秒前
smottom应助dingjianqiang采纳,获得10
5秒前
研友_VZG7GZ应助Wu采纳,获得10
6秒前
姜丽敏完成签到,获得积分20
7秒前
Owen应助小刀刀采纳,获得10
7秒前
8秒前
9秒前
9秒前
JW_QU完成签到,获得积分10
10秒前
崇明发布了新的文献求助10
10秒前
10秒前
SciGPT应助wang采纳,获得10
11秒前
杨洋发布了新的文献求助10
12秒前
潘宋发布了新的文献求助10
12秒前
13秒前
林橙发布了新的文献求助30
13秒前
15秒前
ALIEN发布了新的文献求助10
15秒前
小二郎应助姜丽敏采纳,获得10
16秒前
浩浩然完成签到,获得积分10
16秒前
Wu发布了新的文献求助10
17秒前
鸭鸭完成签到,获得积分10
17秒前
打打应助崇明采纳,获得10
19秒前
19秒前
19秒前
20秒前
abai发布了新的文献求助10
21秒前
21秒前
ALIEN完成签到,获得积分20
21秒前
22秒前
22秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966448
求助须知:如何正确求助?哪些是违规求助? 3511917
关于积分的说明 11160753
捐赠科研通 3246652
什么是DOI,文献DOI怎么找? 1793478
邀请新用户注册赠送积分活动 874465
科研通“疑难数据库(出版商)”最低求助积分说明 804403