亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Modulating the valence electronic structure of Co3O4 to improve catalytic activity of electrochemical nitrate-to-ammonia conversion

过电位 法拉第效率 电化学 电催化剂 氨生产 兴奋剂 材料科学 化学 化学工程 分析化学(期刊) 纳米技术 物理化学 电极 光电子学 工程类 有机化学
作者
Wenda Chen,Zhida Chen,Zhencheng Huang,Lirong Zheng,Zhao Xiaojuan,Jiangtao Hu,Huiqun Cao,Yongliang Li,Xiangzhong Ren,Xiaoping Ouyang,Shenghua Ye,Xueqing Yan,Qianling Zhang,Jianhong Liu
出处
期刊:Science China. Materials [Springer Nature]
卷期号:66 (10): 3901-3911 被引量:45
标识
DOI:10.1007/s40843-023-2552-1
摘要

Electrochemical conversion of NO3− to NH3via the nitrate reduction reaction (NO3−RR) is a promising approach for ammonia production and storage of “green hydrogen”. Co3O4 has shown satisfactory Faradaic efficiency toward $${\rm{N}}{{\rm{H}}_3}\,({\rm{F}}{{\rm{E}}_{{\rm{N}}{{\rm{H}}_3}}})$$ and stability, making it a potential electrocatalyst for the NO3−-to-NH3 conversion. However, the high overpotential required for triggering the NO3−RR on Co3O4 limits its conversion efficiency. In this study, we synthesized Cu-doped Co3O4 porous hollow nanospheres (Cu−Co3O4 PHNSs) for NO3−RR. Cu-doping effectively reduced the required overpotential and improved the NH3 yield rate on the Co3O4 matrix without reducing $${\rm{F}}{{\rm{E}}_{{\rm{N}}{{\rm{H}}_3}}}$$ and stability. Both experimental and theoretical analyses demonstrated that Cu-doping up-shifted the highest occupied state (HOS) of Co3O4, narrowed the energy barrier between the HOS of Co3O4 and the lowest unoccupied molecular orbital of NO3−, and thus reduced the overpotential required for triggering the electron transfer from Co3O4 to NO3−, thereby endowing the as-prepared Cu−Co3O4 PHNSs with outstanding electrocatalytic activity and durability for the NO3−-to-NH3 conversion. This study provides a novel theoretical perspective on the regulation of electrochemical performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李健应助ceeray23采纳,获得20
13秒前
慕青应助ceeray23采纳,获得20
19秒前
xiaoyuan发布了新的文献求助10
20秒前
52秒前
Alisha完成签到,获得积分10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
小鹿发布了新的文献求助10
1分钟前
情怀应助小鹿采纳,获得10
2分钟前
Akim应助ceeray23采纳,获得20
2分钟前
trophozoite完成签到 ,获得积分10
2分钟前
juan完成签到 ,获得积分0
2分钟前
丘比特应助ceeray23采纳,获得20
2分钟前
科研通AI2S应助ceeray23采纳,获得20
2分钟前
shepherd应助ceeray23采纳,获得20
2分钟前
香蕉觅云应助ceeray23采纳,获得20
2分钟前
吴静完成签到 ,获得积分10
2分钟前
量子星尘发布了新的文献求助20
3分钟前
3分钟前
跳跳虎完成签到 ,获得积分10
3分钟前
领导范儿应助光能使者采纳,获得10
3分钟前
LeoBigman完成签到 ,获得积分10
3分钟前
4分钟前
4分钟前
光能使者发布了新的文献求助10
4分钟前
戴云溥应助ceeray23采纳,获得20
4分钟前
平常安雁完成签到 ,获得积分10
4分钟前
5分钟前
白日睡觉发布了新的文献求助10
5分钟前
wanci应助白日睡觉采纳,获得10
5分钟前
从容芮完成签到,获得积分0
5分钟前
Jasper应助感谢采纳,获得10
5分钟前
我是老大应助科研通管家采纳,获得10
5分钟前
5分钟前
万能图书馆应助ceeray23采纳,获得20
5分钟前
感谢发布了新的文献求助10
5分钟前
Zz完成签到 ,获得积分10
6分钟前
6分钟前
枫于林完成签到 ,获得积分10
6分钟前
ceeray23发布了新的文献求助20
6分钟前
彭于晏应助ceeray23采纳,获得20
6分钟前
高分求助中
Encyclopedia of Immunobiology Second Edition 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5584770
求助须知:如何正确求助?哪些是违规求助? 4668652
关于积分的说明 14771555
捐赠科研通 4613838
什么是DOI,文献DOI怎么找? 2530220
邀请新用户注册赠送积分活动 1499078
关于科研通互助平台的介绍 1467523