Commercially Available Chest Radiograph AI Tools for Detecting Airspace Disease, Pneumothorax, and Pleural Effusion

医学 射线照相术 气胸 接收机工作特性 胸腔积液 放射科 胸片 胸膜疾病 皮下气肿 胸部(昆虫解剖学) 呼吸道疾病 核医学 内科学 解剖
作者
Louis Lind Plesner,Felix Müller,Mathias Willadsen Brejnebøl,Lene C Laustrup,Finn Rasmussen,Olav Wendelboe Nielsen,Mikael Boesen,Michael Brun Andersen
出处
期刊:Radiology [Radiological Society of North America]
卷期号:308 (3) 被引量:13
标识
DOI:10.1148/radiol.231236
摘要

Background Commercially available artificial intelligence (AI) tools can assist radiologists in interpreting chest radiographs, but their real-life diagnostic accuracy remains unclear. Purpose To evaluate the diagnostic accuracy of four commercially available AI tools for detection of airspace disease, pneumothorax, and pleural effusion on chest radiographs. Materials and Methods This retrospective study included consecutive adult patients who underwent chest radiography at one of four Danish hospitals in January 2020. Two thoracic radiologists (or three, in cases of disagreement) who had access to all previous and future imaging labeled chest radiographs independently for the reference standard. Area under the receiver operating characteristic curve, sensitivity, and specificity were calculated. Sensitivity and specificity were additionally stratified according to the severity of findings, number of findings on chest radiographs, and radiographic projection. The χ2 and McNemar tests were used for comparisons. Results The data set comprised 2040 patients (median age, 72 years [IQR, 58-81 years]; 1033 female), of whom 669 (32.8%) had target findings. The AI tools demonstrated areas under the receiver operating characteristic curve ranging 0.83-0.88 for airspace disease, 0.89-0.97 for pneumothorax, and 0.94-0.97 for pleural effusion. Sensitivities ranged 72%-91% for airspace disease, 63%-90% for pneumothorax, and 62%-95% for pleural effusion. Negative predictive values ranged 92%-100% for all target findings. In airspace disease, pneumothorax, and pleural effusion, specificity was high for chest radiographs with normal or single findings (range, 85%-96%, 99%-100%, and 95%-100%, respectively) and markedly lower for chest radiographs with four or more findings (range, 27%-69%, 96%-99%, 65%-92%, respectively) (P < .001). AI sensitivity was lower for vague airspace disease (range, 33%-61%) and small pneumothorax or pleural effusion (range, 9%-94%) compared with larger findings (range, 81%-100%; P value range, > .99 to < .001). Conclusion Current-generation AI tools showed moderate to high sensitivity for detecting airspace disease, pneumothorax, and pleural effusion on chest radiographs. However, they produced more false-positive findings than radiology reports, and their performance decreased for smaller-sized target findings and when multiple findings were present. © RSNA, 2023 Supplemental material is available for this article. See also the editorial by Yanagawa and Tomiyama in this issue.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Ava应助温暖的颜演采纳,获得10
刚刚
Ky_Mac应助Lee采纳,获得20
1秒前
ww发布了新的文献求助10
1秒前
1秒前
2秒前
抗氧剂完成签到,获得积分20
3秒前
直率的玉米完成签到 ,获得积分10
3秒前
英俊的铭应助ZMl采纳,获得10
3秒前
3秒前
爆米花应助wh雨采纳,获得10
3秒前
丘比特应助冷水鱼采纳,获得10
3秒前
LiZH完成签到,获得积分10
4秒前
5秒前
传奇3应助ivy采纳,获得10
5秒前
5秒前
Persepolis完成签到,获得积分10
5秒前
mm完成签到,获得积分10
6秒前
量子星尘发布了新的文献求助10
6秒前
小蘑菇应助sweettt3采纳,获得10
6秒前
8秒前
花粉过敏发布了新的文献求助10
8秒前
xianglinnnn完成签到,获得积分10
8秒前
陈2026完成签到,获得积分10
8秒前
xmj发布了新的文献求助10
8秒前
8秒前
善学以致用应助脆脆鲨采纳,获得10
8秒前
跳跃完成签到,获得积分10
8秒前
Wang完成签到,获得积分0
10秒前
10秒前
sssssss发布了新的文献求助10
10秒前
扶瑶可接发布了新的文献求助10
10秒前
11秒前
罐装冰块完成签到,获得积分10
11秒前
shiizii应助激昂的吐司采纳,获得10
11秒前
11秒前
11秒前
淡淡大山完成签到,获得积分20
11秒前
kangnakangna完成签到,获得积分10
12秒前
隐形曼青应助刘云采纳,获得10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Superabsorbent Polymers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5710603
求助须知:如何正确求助?哪些是违规求助? 5199800
关于积分的说明 15261321
捐赠科研通 4863194
什么是DOI,文献DOI怎么找? 2610478
邀请新用户注册赠送积分活动 1560802
关于科研通互助平台的介绍 1518423