Calculating Invisible Loss Time (ILT) Index Values & Predictive Analysis Using Bayesian Approach to Improve Drilling Operational Efficiency: Adopting Best Practices

计算机科学 贝叶斯概率 数据挖掘 绩效指标 差异(会计) 索引(排版) 可靠性工程 统计 人工智能 数学 工程类 业务 会计 管理 万维网 经济
作者
Pranav Dubey,Rachit Mohan Garg,Prateek Kumar,Anurag Tyagi,Aditi Jain,P. Chakraborty,Sameer Chabbra
标识
DOI:10.2118/216289-ms
摘要

Abstract Contribution in reducing Invisible Loss Time (ILT) towards operational efficiency has been a significant approach towards adopting best practices in drilling operations but predicting ILT using mathematical models accurately has been an additional challenge due to multiple factors contributing towards ILT. This paper sketches an algorithm for calculating the ILT Index value and then uses the Bayesian approach for predicting the invisible loss time (ILT) index value over other existing statistical methods. Digital Oilfield architecture processes along with data management systems have worked in synchrony for streaming data for analytics in real-time well engineering solutions. Defined KPIs of Invisible Loss Time (ILT) were evaluated in small sets of datasets with a Bayesian Optimisation approach using a probability model for the likeness of event occurrence. The performance of this model is evaluated based on a comparison of actual vs predicted ILT index values. Benchmarked (BM) values were calculated based on the best performance for the quarter, month, and week to understand the randomness of values. Real-time data generated were packeted for small sets as per KPIs defined for probability analysis. Sets of data made available for calculation were used to feed in the probability model for forecasting the values. Results from the predictive models showcased that batch drilling activities had a significant reduction in variance amongst the ILT values. Reduced ILT while operational activity due to adaptive learning can be calculated to quantify that cost component. Weighted percentages of KPIs in decreasing order of their significance were calculated.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
深情安青应助满意非笑采纳,获得10
1秒前
ayan发布了新的文献求助30
1秒前
1秒前
烟花应助河豚采纳,获得10
2秒前
xxxhl完成签到,获得积分10
2秒前
辛夷完成签到,获得积分10
3秒前
4秒前
科研通AI2S应助甜美的鸭子采纳,获得10
5秒前
zzj发布了新的文献求助10
6秒前
sean完成签到 ,获得积分10
6秒前
科目三应助鱼鱼玉玉米采纳,获得10
7秒前
科研通AI2S应助QY11采纳,获得10
7秒前
8秒前
川川发布了新的文献求助10
9秒前
欣欣发布了新的文献求助10
10秒前
11秒前
富贵小粉猪完成签到,获得积分10
12秒前
满意非笑发布了新的文献求助10
13秒前
14秒前
FashionBoy应助YANG采纳,获得10
14秒前
迷路小丸子完成签到,获得积分10
16秒前
轩辕唯雪发布了新的文献求助30
17秒前
17秒前
周凡淇发布了新的文献求助10
18秒前
微笑的冰烟完成签到,获得积分10
19秒前
19秒前
19秒前
欢喜宛丝完成签到 ,获得积分10
20秒前
20秒前
wxt完成签到 ,获得积分10
20秒前
张小咩咩完成签到 ,获得积分10
22秒前
子车茗应助舒适丹雪采纳,获得30
22秒前
晚夜微雨发布了新的文献求助10
22秒前
23秒前
23秒前
24秒前
wangy完成签到 ,获得积分10
25秒前
大模型应助buhuidanhuixue采纳,获得10
25秒前
财来发布了新的文献求助30
25秒前
河豚发布了新的文献求助10
29秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3136300
求助须知:如何正确求助?哪些是违规求助? 2787372
关于积分的说明 7781210
捐赠科研通 2443353
什么是DOI,文献DOI怎么找? 1299108
科研通“疑难数据库(出版商)”最低求助积分说明 625349
版权声明 600939