Calculating Invisible Loss Time (ILT) Index Values & Predictive Analysis Using Bayesian Approach to Improve Drilling Operational Efficiency: Adopting Best Practices

计算机科学 贝叶斯概率 数据挖掘 绩效指标 差异(会计) 索引(排版) 可靠性工程 统计 人工智能 数学 工程类 会计 万维网 业务 经济 管理
作者
Pranav Dubey,Rachit Mohan Garg,Prateek Kumar,Anurag Tyagi,Aditi Jain,P. Chakraborty,Sameer Chabbra
标识
DOI:10.2118/216289-ms
摘要

Abstract Contribution in reducing Invisible Loss Time (ILT) towards operational efficiency has been a significant approach towards adopting best practices in drilling operations but predicting ILT using mathematical models accurately has been an additional challenge due to multiple factors contributing towards ILT. This paper sketches an algorithm for calculating the ILT Index value and then uses the Bayesian approach for predicting the invisible loss time (ILT) index value over other existing statistical methods. Digital Oilfield architecture processes along with data management systems have worked in synchrony for streaming data for analytics in real-time well engineering solutions. Defined KPIs of Invisible Loss Time (ILT) were evaluated in small sets of datasets with a Bayesian Optimisation approach using a probability model for the likeness of event occurrence. The performance of this model is evaluated based on a comparison of actual vs predicted ILT index values. Benchmarked (BM) values were calculated based on the best performance for the quarter, month, and week to understand the randomness of values. Real-time data generated were packeted for small sets as per KPIs defined for probability analysis. Sets of data made available for calculation were used to feed in the probability model for forecasting the values. Results from the predictive models showcased that batch drilling activities had a significant reduction in variance amongst the ILT values. Reduced ILT while operational activity due to adaptive learning can be calculated to quantify that cost component. Weighted percentages of KPIs in decreasing order of their significance were calculated.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
地表飞猪应助Xx采纳,获得10
1秒前
2秒前
HtObama完成签到,获得积分10
2秒前
小欢完成签到,获得积分10
2秒前
小鹅呀完成签到,获得积分10
3秒前
沟通亿心完成签到,获得积分10
3秒前
果果完成签到,获得积分10
4秒前
Panchael完成签到,获得积分10
4秒前
4秒前
小井盖完成签到 ,获得积分10
6秒前
热情的元芹完成签到,获得积分10
6秒前
7秒前
陶醉的小海豚完成签到,获得积分10
8秒前
陆晓亦完成签到,获得积分10
8秒前
乐观的觅松完成签到,获得积分10
8秒前
2023204306324发布了新的文献求助10
9秒前
10秒前
端己完成签到,获得积分20
10秒前
11秒前
阿湫发布了新的文献求助10
11秒前
12秒前
12秒前
坤坤完成签到,获得积分10
12秒前
13秒前
STUSSY完成签到,获得积分10
13秒前
wuhuofeng发布了新的文献求助10
14秒前
15秒前
16秒前
16秒前
coco完成签到,获得积分10
17秒前
lshao完成签到 ,获得积分10
18秒前
18秒前
zhou发布了新的文献求助30
19秒前
跋扈完成签到,获得积分10
21秒前
温柔翰发布了新的文献求助10
21秒前
21秒前
Jj发布了新的文献求助10
22秒前
ficus_min发布了新的文献求助10
22秒前
木子发布了新的文献求助10
23秒前
Galato发布了新的文献求助10
23秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
Research on Disturbance Rejection Control Algorithm for Aerial Operation Robots 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038524
求助须知:如何正确求助?哪些是违规求助? 3576221
关于积分的说明 11374737
捐赠科研通 3305912
什么是DOI,文献DOI怎么找? 1819354
邀请新用户注册赠送积分活动 892688
科研通“疑难数据库(出版商)”最低求助积分说明 815048