Improving Intrusion Detection Systems for IoT Devices using Automated Feature Generation based on ToN_IoT dataset

计算机科学 入侵检测系统 特征(语言学) 预处理器 人工智能 物联网 特征提取 特征工程 数据挖掘 机器学习 深度学习 计算机安全 语言学 哲学
作者
Kazım Kıvanç Eren,Kerem Küçük
出处
期刊:2021 6th International Conference on Computer Science and Engineering (UBMK) 卷期号:: 276-281 被引量:1
标识
DOI:10.1109/ubmk59864.2023.10286655
摘要

The Internet of Things (IoT) has witnessed exponential growth in recent years, leading to a diverse and interconnected ecosystem of devices. However, this rapid expansion has also made IoT vulnerable to various security threats and attacks. The interconnected nature of IoT devices and their extensive integration into everyday life make them enticing targets for malicious actors. Consequently, the development and deployment of effective intrusion detection systems for IoT environments have become crucial. In the literature, it has been observed that feature engineering, feature extraction, and other preprocessing steps are problematic. The general trend has been to develop intrusion detection systems using complex models such as deep learning concepts, while reducing the effort spent on feature engineering. In this study, the importance of feature engineering is addressed, and it is demonstrated that effective results can be achieved with simple models when proper preprocessing and feature generation steps are applied. An intrusion detection system for IoT devices has been implemented in the ToN_IoT dataset by employing appropriate preprocessing steps and, additionally, utilizing mechanisms for automatic feature generation. In the experiments conducted on the ToN-IoT dataset, we propose a simple model that gives comparable results with the state-of-the-art deep learning models. This model utilizes a basic random forest algorithm and benefits f rom a different t raining scheme that take the benefits of grouping, stratification, re sampling, and automated feature generation strategies. We achieved 99.99% ROC-AUC values for both train and independent test sets. The proposed method shows mostly better performances for specifity, precision, recall, and F1-score than deep learning based models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
666应助登登采纳,获得10
刚刚
一梦丶初醒完成签到 ,获得积分10
1秒前
1秒前
Lucas应助小猫采纳,获得10
2秒前
2秒前
根号3完成签到,获得积分10
3秒前
zwjy完成签到,获得积分10
4秒前
5秒前
要减肥的chao完成签到,获得积分10
7秒前
英俊的铭应助ljx采纳,获得10
9秒前
11秒前
11秒前
长乐完成签到,获得积分10
12秒前
牛牛眉目发布了新的文献求助10
12秒前
大熊完成签到 ,获得积分10
14秒前
15秒前
zk200107发布了新的文献求助10
15秒前
逝月完成签到,获得积分10
18秒前
田様应助杜兰特采纳,获得10
18秒前
18秒前
单身的钧完成签到,获得积分10
20秒前
竹筏过海应助执着的绿柏采纳,获得30
20秒前
jyy应助调皮的浩天采纳,获得10
21秒前
jyy应助调皮的浩天采纳,获得10
21秒前
22秒前
22秒前
22秒前
ljx发布了新的文献求助10
22秒前
CipherSage应助DAZIDAZI02采纳,获得10
24秒前
bibabiu发布了新的文献求助10
26秒前
下课了吧完成签到 ,获得积分10
27秒前
634301059完成签到 ,获得积分10
27秒前
666完成签到,获得积分10
27秒前
27秒前
28秒前
29秒前
shencan完成签到,获得积分10
29秒前
望北楼主发布了新的文献求助10
31秒前
李爱国应助Kiling采纳,获得10
32秒前
666应助nn采纳,获得10
33秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966344
求助须知:如何正确求助?哪些是违规求助? 3511753
关于积分的说明 11159558
捐赠科研通 3246341
什么是DOI,文献DOI怎么找? 1793389
邀请新用户注册赠送积分活动 874417
科研通“疑难数据库(出版商)”最低求助积分说明 804361