亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Improving Intrusion Detection Systems for IoT Devices using Automated Feature Generation based on ToN_IoT dataset

计算机科学 入侵检测系统 特征(语言学) 预处理器 人工智能 物联网 特征提取 特征工程 数据挖掘 机器学习 深度学习 计算机安全 哲学 语言学
作者
Kazım Kıvanç Eren,Kerem Küçük
出处
期刊:2021 6th International Conference on Computer Science and Engineering (UBMK) 卷期号:: 276-281 被引量:1
标识
DOI:10.1109/ubmk59864.2023.10286655
摘要

The Internet of Things (IoT) has witnessed exponential growth in recent years, leading to a diverse and interconnected ecosystem of devices. However, this rapid expansion has also made IoT vulnerable to various security threats and attacks. The interconnected nature of IoT devices and their extensive integration into everyday life make them enticing targets for malicious actors. Consequently, the development and deployment of effective intrusion detection systems for IoT environments have become crucial. In the literature, it has been observed that feature engineering, feature extraction, and other preprocessing steps are problematic. The general trend has been to develop intrusion detection systems using complex models such as deep learning concepts, while reducing the effort spent on feature engineering. In this study, the importance of feature engineering is addressed, and it is demonstrated that effective results can be achieved with simple models when proper preprocessing and feature generation steps are applied. An intrusion detection system for IoT devices has been implemented in the ToN_IoT dataset by employing appropriate preprocessing steps and, additionally, utilizing mechanisms for automatic feature generation. In the experiments conducted on the ToN-IoT dataset, we propose a simple model that gives comparable results with the state-of-the-art deep learning models. This model utilizes a basic random forest algorithm and benefits f rom a different t raining scheme that take the benefits of grouping, stratification, re sampling, and automated feature generation strategies. We achieved 99.99% ROC-AUC values for both train and independent test sets. The proposed method shows mostly better performances for specifity, precision, recall, and F1-score than deep learning based models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ding应助ppapppap采纳,获得10
12秒前
26秒前
kukudou2完成签到,获得积分10
33秒前
优雅夕阳完成签到 ,获得积分10
45秒前
爱静静应助科研通管家采纳,获得10
54秒前
欢呼宛亦完成签到,获得积分10
1分钟前
1分钟前
欢呼宛亦发布了新的文献求助10
1分钟前
1分钟前
linshunan完成签到 ,获得积分10
1分钟前
maodeshu应助白华苍松采纳,获得20
1分钟前
假萌完成签到,获得积分10
1分钟前
1分钟前
maodeshu应助背后菠萝采纳,获得30
2分钟前
2分钟前
maodeshu应助白华苍松采纳,获得20
2分钟前
maodeshu应助shawn采纳,获得10
2分钟前
3分钟前
3分钟前
lutra完成签到 ,获得积分10
3分钟前
ppapppap发布了新的文献求助10
3分钟前
kohu完成签到,获得积分10
3分钟前
3分钟前
fs完成签到 ,获得积分10
3分钟前
maodeshu应助白华苍松采纳,获得20
3分钟前
背后菠萝发布了新的文献求助30
4分钟前
4分钟前
maodeshu应助白华苍松采纳,获得20
4分钟前
背后菠萝完成签到,获得积分10
4分钟前
4分钟前
5分钟前
maodeshu举报晓啸求助涉嫌违规
5分钟前
maodeshu应助白华苍松采纳,获得20
6分钟前
6分钟前
晓啸发布了新的文献求助10
6分钟前
所所应助笨笨的元绿采纳,获得10
6分钟前
小二郎应助忘皆空采纳,获得10
6分钟前
kkk完成签到 ,获得积分10
6分钟前
6分钟前
6分钟前
高分求助中
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger Heßler, Claudia, Rud 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 1000
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
Spatial Political Economy: Uneven Development and the Production of Nature in Chile 400
Research on managing groups and teams 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3330375
求助须知:如何正确求助?哪些是违规求助? 2960038
关于积分的说明 8598044
捐赠科研通 2638594
什么是DOI,文献DOI怎么找? 1444478
科研通“疑难数据库(出版商)”最低求助积分说明 669106
邀请新用户注册赠送积分活动 656727